
CSCI 374 — Machine Learning and Data Mining 
Oberlin College — Fall 2016 

Homework #1: Decision Trees 
 
Important Dates 
 
Assigned: September 21 

Snapshot 1: September 28 (11:59 PM) 
Snapshot 2: October 5 (11:59 PM) 

Final Due Date: October 10 (11:59 PM) 
 
Assignment 
 
In this assignment, you will practice: 

1) implementing machine learning algorithms from scratch, 
2) experimenting with those algorithms on a variety of provided data sets with different 

properties,  
3) analyzing the results of those experiments to evaluate the performance of the different 

implemented learning algorithms with respect to different data sets, and 
4) writing a technical report detailing (i) how your implementation works, (ii) your 

experimental setup, (iii) the results of your experiments, and (iv) any implications or 
lessons learned from your implementation and results. 

 
In particular, you will implement the two or three machine learning algorithms discussed in class 
for learning decision tree representations of a supervised learning classifier: ID3, C4.5, and 
(optionally) CART.  Through implementing the algorithms (rather than re-using existing 
implementations), you will gain a better understanding of how decision trees are learned, how 
they can be used, as well as the differences between various algorithms for learning decision 
trees and their relative advantages and disadvantages. 
 
Acceptable Programming Languages 
 
You can use either the Java or Python programming languages to complete this assignment. 
 
Data Sets 
 
For this assignment, you will use three pre-defined data sets in CSV files that can be downloaded 
from the “Course Content/Homework 1” folder on Blackboard: 

3) monks1.csv: A data set describing two classes of robots using all nominal attributes and 
a binary label.  This data set has a simple rule set for determining the label: if 
head_shape = body_shape ∨ jacket_color = red, then yes, else no.  



This data set is useful for debugging your implementations and verifying their 
correctness.  Monks1 was one of the first machine learning challenge problems 
(http://www.mli.gmu.edu/papers/91-95/91-28.pdf).  This data set comes from the UCI 
Machine Learning Repository: 
http://archive.ics.uci.edu/ml/datasets/MONK%27s+Problems 

4) opticalDigit.csv: A data set of optical character recognition of numeric digits from 
processed pixel data.  Each instance represents a different 32x32 pixel image of a 
handwritten numeric digit (from 0 through 9).  Each image was partitioned into 64 4x4 
pixel segments and the number of pixels with non-background color were counted in 
each segment.  These 64 counts (ranging from 0-16) are the 64 attributes in the data set, 
and the label is the number from 0-9 that is represented by the image.  This data set is 
more complex than the Monks1 data set, but still contains only nominal attributes and a 
nominal label.  This data set comes from the UCI Machine Learning Repository: 
http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits 

5) hypothyroid.csv: A data set describing patient health data using a mix of nominal and 
continuous attributes that can be used to diagnose the health of a patient’s thyroid into 
four possible labels.  This data set is more complex in the types of attributes and the 
number of labels than the other two data sets.  This data set comes from Weka 3.8: 
http://www.cs.waikato.ac.nz/ml/weka/ 

 
The file format for each of these data sets is as follows: 

• The first row contains a comma-separated list of the names of the label and attributes 

• Each successive row represents a single instance 

• The first entry (before the first comma) of each instance is the label to be learned, and all 
other entries (following the commas) are attribute values. 

• Some attributes are strings (representing nominal values), some are integers, and others 
are real numbers.  Each label is a string. 

 
Program Behavior 
 
Your program should behave as follows: 

1) It should take as input three parameters: 
a. The path to a file containing a data set (e.g., monks1.csv) 
b. The name of the algorithm to use for training (see below for more details) 
c. A random seed as an integer 

2) Next, the program should read in the data set as a set of instances 

3) The instances should be split into training and test sets (using the random seed input to 
the program) 

4) The training set should be fed into the specified machine learning algorithm to construct a 
decision tree fitting the training data 

5) The learned decision tree should be evaluated using the test set created in Step 3. 



6) The confusion matrix counted during Step 5 should be output as a file with its name 
following the pattern: results_<DataSet>_<Algorithm>_<Seed>.csv (e.g., 
results_monks1_ID3_12345.csv).   
 

The file format for your output file should be as follows: 
 

• The first row should be a comma-separated list of the possible labels in the data set, 
representing the list of possible predictions of the decision tree.  This row should end in 
a comma. 

• The second row should be a comma-separated list of the counts for the instances 
predicted as the different labels whose true label is the first possible label, ending with 
the name of the first possible label (and not a final comma). 

• The third row should be a comma-separated list of the counts for the instances predicted 
as the different labels whose true label is the second possible label, ending with the name 
of the second possible label (and not a final comma). 

• Etc. for the remaining possible labels 
 
For example, the confusion matrix: 
 

Predicted Label  
Yes No 
200 100 Yes Actual  

Label 50 250 No 
 
would be output as: 
 
Yes,No, 
200,100,Yes 
50,250,No 
 
The output for your program should be consistent with the random seed.  That is, if the same 
seed is input twice, your program should learn the exact same tree and output the exact same 
confusion matrix.  You are free to also output other files, too, if you wish (e.g., a file describing 
the learned tree).   
 
Experiments 
 
There are two options for completing this assignment: 
 
Option #1: Implement each of the ID3, C4.5, and CART algorithms, then use the three data sets 
to conduct the following experiments: 

1) Pick a single random seed (include it in your report) and run each learning algorithm on 
each data set (with the exception of do not run ID3 on the hypothyroid data set since it 
contains numeric data), then compare the resulting performance of the learned decision 



trees from each algorithm.  For each data set, how do the accuracies?  Remember to use 
95% confidence intervals in your comparisons. 

2) Pick one data set, then learn 30 different decision trees with each algorithm, and calculate 
the average accuracy per algorithm across the 30 runs.  To do so, use 30 different random 
seeds to generate 30 different training sets and 30 different trees.  Then, compare the 
average accuracy across those 30 runs with the confidence intervals found in Experiment 
1 above to answer the following questions for each algorithm: 

a. How close was the average accuracy across the 30 runs to the original accuracy 
found in Experiment 1?   

b. Does the average accuracy fall within or outside the confidence interval found in 
Experiment 1?   

c. Are the average accuracies across algorithms closer or farther apart than the 
original accuracies computed for Experiment 1? 
 

Only calculate standard errors and confidence intervals in Experiment 1 and not for your 
30 additional runs in Experiment 2. 

 
The goal of Experiment 1 is to investigate how the different algorithms compare on different 
data sets and gain practice evaluating their differences.  The goal of Experiment 2 is to gain 
additional understanding into how confidence intervals measure the performance of machine 
learning algorithms. 
 
For Option #1, the names of the algorithms to use as input to your program should be ID3, C4.5, 
and CART. 
 
Option #2: Implement the ID3 algorithm, as well as three variants of C4.5: (1) full C4.5, (2) 
C4.5 without pruning, and (3) C4.5 without using SplitInformation when determining the best 
attribute (only use Gain as in ID3).  Then, using the three data sets, conduct the same two 
experiments as in Option #1, except consider all three variants of C4.5 (and leave out CART) in 
both Experiment 1 and 2. 
 
In particular, add the following analyses: 

• For the monks1.csv and opticalDigit.csv data sets, draw the root and children of the trees 
found by ID3 and C4.5 without pruning.  Compare any similarities or differences 
between the trees. 

• For the monks1.csv and opticalDigit.csv data sets, compare the attributes found at the top 
of the tree in ID3 and in the most accurate rules found by (full) C4.5.  Do the same 
attributes appear in both?  What differences do you find? 

• For all three data sets, compare full C4.5 to C4.5 without pruning to evaluate the benefits 
of pruning on total accuracy on the test set. 

• For all three data sets, compare full C4.5 and C4.5 without SplitInformation to evaluate 
any possible benefits on total accuracy on the test set caused by considering 
SplitInformation when choosing the best attribute for each node. 



 
For Option #2, the names of the algorithms to use as input to your program should be ID3, C4.5, 
C4.5NP (for C4.5 without pruning), C4.5NSI (for C4.5 without SplitInformation) 
 
Snapshots 
 
Since the homework assignment is multiple weeks long, there are two intermediate deadlines to 
help you make sure you complete the entire assignment on time: 
 
Snapshot 1 (due Wednesday September 28 at 11:59 PM): your program should be capable of: 

• Inputting the program parameters described above 

• Reading a data set into a set of instances 

• Splitting the data set into training and test sets (using the random seed) 

• Running the ID3 algorithm 

• Outputting the confusion matrix from testing the learned tree 
 
Snapshot 2 (due Wednesday October 5 at 11:59 PM): your program should additionally be 
capable of: 

• Running the C4.5 algorithm 
 
For each snapshot, your code (and associated Makefile and README described below) should 
be organized in a ZIP file and turned in on Blackboard.  Your zip file should be named: 
 

<OCCSUserName>_SnapshotX.zip 
 
For example, Alice Student’s second snapshot would be named: astudent_Snapshot2.zip 
 
Final Handin 
 
Before the assignment due date (Monday October 10 at 11:59 PM), you will turn in: 

1) A ZIP file (named as your OCCS username) containing: 
a. Your source code 
b. A Makefile for compiling your source code 
c. A README file 

2) Your technical report as a PDF file, named the same as your ZIP file.  
 
Your Makefile must be able to compile your source code into an executable program that 
behaves as described above.  Your README file should describe the different source code files 
used by your program, as well as instructions for running your program and finding its output 
file(s). 
 
Your technical report should contain: 



• An introduction describing the assignment and the contents of the report (provide the 
reader with the background needed to understand the rest of the report) 

• A description of your implementation (what did you create?) 

• A description of your experimental setup (what did you run and for what purpose?) 

• A discussion of the results (what did you find, why did you find that, and what are the 
implications?) 

• A conclusion summarizing the report and assignment 
 
Grading 
 
The homework will be graded as follows: 

• Snapshot 1: 5% 

• Snapshot 2: 5% 

• Implementation Correctness and Documentation: 50% 

• Report: 40% 
 
Honor Code 
 
Each student is to complete this assignment individually.  However, since the assignment is a 
mini-project in scope, students are encouraged to collaborate with one another to discuss the 
abstract design and processes of their implementations.  For example, please feel free to discuss 
the pseudocode for each learning algorithm to help each other work through issues understanding 
exactly how the learning algorithms work.  You might also want to discuss the processes used to 
generate the training and test sets from the read in data set.  Or, you might need to discuss how to 
work with the input and output files. 
 
At the same, since this is an individual assignment, no code can be shared between students, nor 
can students look at each other’s code.  All discussions should be limited to abstract details and 
not implementation-specific concerns.  For example, no discussing of the code used in the 
classes used to represent a decision tree, nor the lines of code used to build the trees from 
training data.  Furthermore, the source code of existing machine learning libraries (e.g., Weka for 
Java, scikit-learn for Python) must not be consulted.  Any violation of the above will be 
considered an Honor Code violation.   
 
If you have any questions about what is permissible and what is not, please discuss with the 
professor.  Please also feel free to stop by office hours to discuss the homework assignment if 
you have any questions or concerns. 
 


