
CSCI 374 — Machine Learning and Data Mining
Oberlin College — Fall 2016
Homework #2: Naïve Bayes

Important Dates

Assigned: October 14

Snapshot 1: October 28 (11:59 PM)
Snapshot 2: November 4 (11:59 PM)

Final Due Date: November 7 (11:59 PM)

Assignment

In this assignment, you will practice:

1) acquiring real-world data to use as “experience” for machine learning,
2) preprocessing data before training,

3) implementing another machine learning algorithm from scratch,
4) experimenting with various algorithms on a variety of data sets,

5) analyzing the results of those experiments to evaluate the performance of the different
implemented learning algorithms with respect to different data sets, and

6) writing a technical report detailing (i) how your implementation works, (ii) your
experimental setup, (iii) the results of your experiments, and (iv) any implications or
lessons learned from your implementation and results.

In particular, you will implement the Naïve Bayes algorithm discussed in class for learning
probabilistic representations of a supervised learning classifier. Through implementing the
algorithm (rather than re-using existing implementations), you will gain a better understanding of
how Naïve Bayes learns to predict the probabilities of labels, how it can be used in different
settings, as well as the differences between Naïve Bayes and two of the decision tree algorithms
from the first homework — including their relative advantages and disadvantages.

This assignment has two parts, described below. You will write a separate program for each of
the two parts (although you should feel free to share code between the two – the two parts just
need different entry points into your programs.

Acceptable Programming Languages

You can use either the Java or Python programming languages to complete this assignment.

Part 1: Comparison with Decision Trees

In the first part this assignment, your goal is to train and test Naïve Bayes on the two nominal
data sets considered in Homework 1, then compare the results from Naïve Bayes with the results
from two of the algorithms you implemented in Homework 1 — ID3 and C4.5. Note: if you did
not complete C4.5, you can once again use Weka to generate your C4.5 results (please note this
in your final report).

Data Sets

1) monks1.csv: A data set describing two classes of robots using all nominal attributes and
a binary label. This data set has a simple rule set for determining the label: if
head_shape = body_shape ∨ jacket_color = red, then yes, else no.
This data set is useful for debugging your implementations and verifying their
correctness. Monks1 was one of the first machine learning challenge problems
(http://www.mli.gmu.edu/papers/91-95/91-28.pdf). This data set comes from the UCI
Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/MONK%27s+Problems

2) opticalDigit.csv: A data set of optical character recognition of numeric digits from
processed pixel data. Each instance represents a different 32x32 pixel image of a
handwritten numeric digit (from 0 through 9). Each image was partitioned into 64 4x4
pixel segments and the number of pixels with non-background color were counted in
each segment. These 64 counts (ranging from 0-16) are the 64 attributes in the data set,
and the label is the number from 0-9 that is represented by the image. This data set is
more complex than the Monks1 data set, but still contains only nominal attributes and a
nominal label. This data set comes from the UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

Both data sets can still be downloaded from the “Course Content/Homework 1” folder on
Blackboard. The file format for each of these data sets is described in the Homework 1
Assignment, in case you need to refer back to it.

Program Behavior

Your program for Part 1 should behave as follows, similar to your program for Homework 1:

1) Your program should be named NBPart1
2) It should take as input two parameters:

a. The path to a file containing a data set (e.g., monks1.csv)
b. A random seed as an integer

3) Next, the program should read in the data set as a set of instances
4) The instances should be split into training and test sets (using the random seed input to

the program)

5) The training set should be fed into Naïve Bayes to learn the conditional probability
relationships between attribute values and labels

6) The learned model should be evaluated using the test set created in Step 3.
7) The confusion matrix counted during Step 5 should be output as a file with its name

following the pattern: results_<DataSet>_NaiveBayes_<Seed>.csv (e.g.,
results_monks1_NaiveBayes_12345.csv).

The file format for your output file should be exactly the same as in Homework 1. Please refer
back to the Homework 1 Assignment for details, if necessary.

Experiment

The goal of the following experiment is to investigate how different types of supervised learning
algorithms perform on different data sets with different properties. That is, our goal is to
compare Bayesian Learning (Naïve Bayes) with Decision Trees (ID3 and C4.5).

For your experiment in Part 1, pick 30 random seeds (include them in your report), then calculate
the average accuracy of Naïve Bayes, ID3, and C4.5 on each of the two data sets across the 30
runs (one run per seed). Afterwards, compare the average accuracies between the algorithms to
evaluate their performances on the different data sets. In particular, evaluate:

1) How did each algorithm perform on Monks 1? Did one type of approach (Bayesian vs.
Decision Tree) achieve significantly better performance on this data set? If so, why do
you think this happened? If not, what does this say about the two approaches?

2) How did each algorithm perform on Optical Digit? Did one type of approach (Bayesian
vs. Decision Tree) achieve significantly better performance on this data set? If so, why
do you think this happened? If not, what does this say about the two approaches?

Confidence Interval Calculations

Different from Homework 1, we want to calculate confidence intervals around the average
accuracies from the 30 runs for Homework 2 so that we can evaluate if one algorithm
significantly outperformed another. To do so, we use a slightly different equation for the
confidence interval.

Let 𝐴𝑐𝑐$%& be the list of accuracy values calculated from the 𝑚 = 𝐴𝑐𝑐$%& runs for a particular
algorithm 𝐴𝑙𝑔. Let

𝑥 =
1
𝑚 𝑝

.∈$00123

represent the average accuracy of 𝐴𝑙𝑔 across those 𝑚 runs. Let 𝑛 be the size of the testing set in
each run. Finally, let

𝑠$%& =
1

𝑚 − 1 𝑝 − 𝑥 7

.∈$00123

represent the standard deviation of the of 𝐴𝑙𝑔 across those 𝑚 runs. Then, the 95% confidence
interval of 𝑥 for 𝐴𝑙𝑔 is approximately:

𝑥 ± 1.96
𝑠$%&
𝑚𝑛

= 𝑥 − 1.96
𝑠$%&
𝑚𝑛

, 𝑥 + 1.96
𝑠$%&
𝑚𝑛

Although this approximation is not exact, it is close enough (and easy enough to calculate) for
the purposes of this homework assignment.

Part 2: Let’s Play Jeopardy!® (Text Classification)

In the second part this assignment, your goal is to write a program capable of competing in a
simplified game of Jeopardy!® where all the questions ask for the author of a given passage
from a famous writing. For your program, you will train and test Naïve Bayes as a text classifier
using text downloaded from Project Gutenberg. In particular, you will download popular,
famous books from 10 authors, train Naïve Bayes to learn the writing styles (indicated by word
choices) of each author from those texts, then predict which author wrote 50 short passages
(taken from different texts than those you used for training).

Data Sets

You need to download the TXT files of the following books from Project Gutenberg at
https://www.gutenberg.org/wiki/Main_Page:

1. Pride and Prejudice by Jane Austen
2. Alice’s Adventures in Wonderland by Lewis Carroll
3. Great Expectations by Charles Dickens
4. The Adventures of Sherlock Holmes by Arthur Doyle
5. The Odyssey by Homer
6. The Trial by Franz Kafka
7. The Republic by Plato
8. Anna Karenina by Leo Tolstoy
9. The War of the Worlds by H.G. Wells

Additionally, you should also find two texts by another author of your choice. Pick one of those
two (preferably the larger of the two) as a tenth book to include with the nine listed above.
These nine books listed above (plus the one you chose as a tenth) will serve as the training set for
your machine learning with Naïve Bayes. The other book you chose will be part of your testing
set (described below).

Note: from these ten books used for training, you will want to manually remove the additional
text added by Project Gutenberg located at the beginning and end of each file so that you are
only learning from the original text by the author (or its translation by another author).

Program Behavior

Your program for Part 2 should behave as follows:

1) Your program should be named NBPart2

2) It should take in one parameter:
a. The path to a file containing the test set (downloaded from Blackboard)

3) Next, the program should read in the ten previously identified books to use for training
4) The text of each book should be preprocessed to make it appropriate for training with

Naïve Bayes:
a. The text should be split into a list of words (or lists of words, one per

paragraph/sentence/however you wish)
b. Each word should be converted to lower case so that capitalization is ignored

c. Stop words should be removed (e.g., a, an, the). You can choose your own stop
words (feel free to search the internet for a list, just remember to cite your source
in your code and report)

d. Remaining words should be “stemmed”

5) The text of the test set should also be read in and preprocessed the same as with the
training data in Step 4.

6) The stemmed words from each book should be fed into Naïve Bayes to learn models of
the writing styles of each author (where the label for your data is the author of the text).

7) The learned model should be evaluated using the provided test set (with your additions
for your chosen tenth author).

8) The confusion matrix counted during Step 6 should be output as a file with its name
following the pattern: results_TextClassification.csv

I will provide you with code to: (1) build a list of keywords from a String of text, and (2) create a
list of stemmed words from a list of words. This code can be the only code you use that relies on
external libraries.

The format of the test file (called TestSet_Passages.txt on Blackboard) is as follows:

Label
Passage

Label
Passage

etc.

You will need to be able to read in the test instances between the #### lines, where the first line
is the actual author of the passage, and the second line is the passage to be tested. You should
add 5 passages from the second book (not the one used in training) written by your chosen
author to this test set so that you can also evaluate the ability of your program to predict
passages written by your chosen author.

Experiment

For this experiment, you do not need to do anything with random seeds. Instead, you are given
an explicit training set (the 10 books) and an explicit test set (of 50 passages, after your 5
passage are added). Your goal is to:

1) Calculate the overall predictive accuracy of your Naïve Bayes implementation on the 50
test passages.

2) Compare the recall and precision for each author. Which authors did your program best
learn to predict correctly, and for whom did it have the most difficulty?

3) Investigate: for the authors for which your program made incorrect predictions, were
there any trends that you observed? That is, did your program tend to confuse two or
more authors, thinking that they were similar? If so, does this confusion make sense
given what you know about those authors (e.g., their time period, their location, etc.)?

For your overall accuracy, please use the original confidence interval calculations used for
Experiment 1 in Homework 1 (and not the one described above for Part 1 of this assignment).
You do not need to find confidence intervals for the precision and recall measures (since their 𝑛
will be much smaller than 30, 𝑍?.@A = 1.96 will not be not a close approximation).

Snapshots

Since the homework assignment is multiple weeks long, there are two intermediate deadlines to
help you make sure you complete the entire assignment on time:

Snapshot 1 (due Friday October 28 at 11:59 PM): you should have the program done for:

• The implementation for Part 1 of the assignment

Snapshot 2 (due Friday November 4 at 11:59 PM): you should have the program done for:

• The implementation for Part 2 of the assignment

For each snapshot, your code (and associated Makefile and README described below) should
be organized in a ZIP file and turned in on Blackboard. Your zip file should be named:

<OCCSUserName>_SnapshotX.zip

For example, Alice Student’s second snapshot would be named: astudent_Snapshot2.zip

Final Handin

Before the assignment due date (Monday November 7 at 11:59 PM), you will turn in:

1) A ZIP file (named as your OCCS username) containing:
a. Your source code
b. A Makefile for compiling your source code
c. A README file

2) Your technical report as a PDF file, named the same as your ZIP file.

Your Makefile must be able to compile your source code into an executable program that
behaves as described above. Your README file should describe the different source code files
used by your program, as well as instructions for running your program and finding its output
file(s).

Your technical report should contain:

• An introduction describing the assignment and the contents of the report (provide the
reader with the background needed to understand the rest of the report)

• A description of your implementation for both parts (what did you create?)

• A description of your experimental setups for both parts (what did you run and for what
purpose?)

• A discussion of the results from both parts (what did you find, why did you find that, and
what are the implications?)

• A conclusion summarizing the report and assignment

• An estimate of the total time spent on this assignment (broken down into the two parts)

Grading

The homework will be graded as follows:

• Snapshot 1: 5%

• Snapshot 2: 5%

• Implementation Correctness and Documentation: 50%

• Report: 40%

Honor Code

Each student is to complete this assignment individually or with a single partner. Since the
assignment is a mini-project in scope, students are encouraged to collaborate with one another to
discuss the abstract design and processes of their implementations. For example, please feel free
to discuss the pseudocode for each learning algorithm to help each other work through issues

understanding exactly how the learning algorithms work. You might also want to discuss the
processes used to generate the training and test sets from the read in data set. Or, you might need
to discuss how to work with the input and output files.

At the same, since this is an individual or small group assignment, no code can be shared
between small groups, nor can students look at other groups’ code. All discussions between
small groups should be limited to abstract details and not implementation-specific concerns.
Furthermore, the source code of existing machine learning libraries (e.g., Weka for Java, scikit-
learn for Python) must not be consulted. Any violation of the above will be considered an Honor
Code violation.

If you have any questions about what is permissible and what is not, please discuss with the
professor. Please also feel free to stop by office hours to discuss the homework assignment if
you have any questions or concerns.

