Main Steps

There are five main steps for an induction proof.

Step 1: State your $P(n)$. State what property of n you are trying to prove, which should be a boolean function of n. Also state for which n you will prove your $P(n)$ to be true.

For any $n \geq \langle \text{base case} \rangle$, let $P(n)$ be the property that __________.

Step 2: State your base case. State for which n your base case is true, and prove it. Typically, this will be the smallest n for which you are trying to prove $P(n)$, but occasionally you’ll need more than one base case.

As a base case, consider when $n = \langle \text{base case} \rangle$. We will show that $P(\langle \text{base case} \rangle)$ is true, by: __________.

Step 3: State your induction hypothesis. State your induction hypothesis. Here you are usually just hypothetically asserting the property P for some fixed $k \geq \langle \text{base case} \rangle$.

For the induction hypothesis, suppose (hypothetically) that $P(k)$ were true for some fixed $k \geq \langle \text{base case} \rangle$, that is, suppose that __________.

Step 4: Prove the inductive step. Now consider $P(k + 1)$. Here is where you actually do the proof that $P(k + 1)$ is true, and thus this is where the creativity comes in. This proof is going to be different for each induction proof; sometimes it will use algebra, number theory, common sense, etc. It will always need to use the induction hypothesis $P(k)$, and you should clearly label when and where you use this assumption. If you haven’t used your induction hypothesis, then you aren’t doing a proof by induction (and you should be worried!)

The proof that $P(k + 1)$ is true (given that $P(k)$ is true) is as follows: __________.

Step 5: Conclusion. Summarize the steps above.

We have shown that if $P(k)$ is true, then $P(k + 1)$ is true. Thus, because $P(\langle \text{base case} \rangle)$ is true, you have that $P(n)$ is true for all $n \geq \langle \text{base case} \rangle$.
Comments

- Check that your $P(n)$ mentions n in it somewhere, and that it doesn’t mention other variables. Remember, P is just like a Java method that has one integer parameter n and returns a boolean value dependent on n. You should use the variable n in P, and no others.

- $P(n)$ is a boolean property, not a number, so you cannot manipulate it mathematically, like $P(n) = 5$, or $P(n + 1) < P(n)$.

- Be careful with the base case—sometimes you will need more than one, as with some recurrence relations.

- You must use your induction hypothesis somewhere in the proof of the inductive step, otherwise you are not doing a proof by induction. Check to be sure.

- If you’re stuck in your inductive step, take a step back for a moment. What are you trying to prove? Keep this in mind when you work on proving $P(k + 1)$. Since you have to use your induction hypothesis somewhere, you may want to think about how you can manipulate what you’ve got into something that resembles your induction hypothesis. Also, you may want to check any algebra you’ve done as that can often be the source of problems!

- When trying to prove some equation holds, that is, if you are trying to prove that $\text{left-hand-side} = \text{right-hand-side}$

 for some left-hand-side and right-hand-side, please do not start with assuming they are equal and then modifying both sides of the equations until you get an equation that is actually true. For example:

 \[
 \begin{align*}
 \text{left-hand-side} &= \text{right-hand-side} \\
 0 \times \text{left-hand-side} &= 0 \times \text{right-hand-side} \\
 0 &= 0.
 \end{align*}
 \]

 Therefore they are equal.

 Obviously I can ‘prove’ that left-hand-side = right-hand-side using this method for any left-hand-side and right-hand-side, regardless of whether or not they are actually equal! What is better is to start with left-hand-side, make modifications to left-hand-side through a string of equalities that somehow ends with right-hand-side. That is,

 \[
 \begin{align*}
 \text{left-hand-side} &= \cdots \\
 &= \cdots \\
 &= \text{right-hand-side}.
 \end{align*}
 \]

 This will guarantee that you don’t prove something that isn’t true.

- Recall the difference between strong and weak induction. They’re equivalent, but sometimes using one is easier than using the other.
Example 1: Sum of Squares

Suppose we are trying to come up with a formula for the sum of the first \(n \) squares, for \(n \geq 0 \). We may try a few numbers out to see if we can find a pattern:

\[
\begin{align*}
0^2 &= 0 \\
0^2 + 1^2 &= 1 \\
0^2 + 1^2 + 2^2 &= 5 \\
0^2 + 1^2 + 2^2 + 3^2 &= 14
\end{align*}
\]

It looks like the sum of the first \(n \) squares may be \(n(n+1)(2n+1)/6 \). It certainly works for the few examples above, but I’d like to prove that the formula works for every single \(n \geq 0 \), that is, I want to prove an infinite number of equalities. Let’s see how to do this with induction:

Step 1. For any \(n \geq 0 \), let \(P(n) \) be the property that

\[
0^2 + 1^2 + 2^2 + \cdots + (n-1)^2 + n^2 = \frac{n(n+1)(2n+1)}{6}.
\]

We want to show that \(P(n) \) is true for all \(n \geq 0 \).

Step 2. As a base case, consider when \(n = 0 \). We will show that \(P(0) \) is true: that is, that

\[0^2 + \cdots + 0^2 = 0(0 + 1)(2 \cdot 0 + 1)/6.\]

Fortunately,

\[
\text{left-hand side} = 0^2 + \cdots + 0^2 = 0 = 0(0 + 1)(0 + 1)/6 = \text{right-hand side}.
\]

Step 3. For the induction hypothesis, suppose (hypothetically) that \(P(k) \) were true for some fixed \(k \geq 0 \). That is, suppose that

\[
0^2 + 1^2 + 2^2 + \cdots + (k-1)^2 + k^2 = \frac{k(k+1)(2k+1)}{6}.
\]

Step 4. Now we prove that \(P(k+1) \) is true, using the (hypothetical) induction assumption that \(P(k) \) is true. That is, we prove that

\[
0^2 + 1^2 + 2^2 + \cdots + k^2 + (k+1)^2 = \frac{(k+1)(k+2)(2(k+1)+1)}{6}.
\]

The proof that \(P(k+1) \) is true (given that \(P(k) \) is true) is as follows:

\[
\begin{align*}
\text{left-hand side} &= 0^2 + 1^2 + 2^2 + \cdots + k^2 + (k+1)^2 \\
&= (0^2 + 1^2 + 2^2 + \cdots + k^2) + (k+1)^2 \\
&= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \\
&= \frac{(k+1)(2k^2 + 7k + 6)}{6} \\
&= \frac{(k + 1)(2k + 3) + (k+1)^2}{6} \\
&= \frac{(k+1)(k+2)(2k+3)}{6} \\
&= \text{right-hand side}.
\end{align*}
\]

Therefore we have shown that if \(P(k) \) is true, then \(P(k+1) \) is also true, for any \(k \geq 0 \).

Step 5. The steps above have shown that for any \(k \geq 0 \), if \(P(k) \) is true, then \(P(k+1) \) is also true. Combined with the base case, which shows that \(P(0) \) is true, we have shown that for all \(n \geq 0 \), \(P(n) \) is true, as desired.
Example 2: Towers of Hanoi

There are \(n \) disks of different diameters stacked from largest to smallest on a start tower. The goal is to move all disks to an end tower, such that they are stacked in same order. You have one extra tower, and you are restricted to moving one disk at a time, such that you never place a larger disk on top of a smaller disk. We propose the following algorithm:

\[
tower(\text{n disks, start tower, end tower, extra tower})
\]
- if \(n == 0 \), do nothing and return.
- recursively move top \(n-1 \) disks from start to extra, using end as third tower
 (that is, call tower(n-1, start tower, extra tower, end tower))
- move the nth disk from the start tower to the end tower
- recursively move the \(n-1 \) disks on extra to end, using start as third tower
 (that is, call tower(n-1, extra tower, end tower, start tower))

Step 1. For any \(n \geq 0 \), let \(P(n) \) be the property that the algorithm moves \(n \) disks from the start tower to the end tower one disk at a time, such that larger disks are never on smaller disks, in \(2^n - 1 \) steps.

Step 2. As a base case, consider when \(n = 0 \). We will show that \(P(0) \) is true, that is, that the algorithm moves 0 disks in \(2^0 - 1 = 0 \) moves, following the rules. And this is what it does.

Step 3. For the induction hypothesis, suppose (hypothetically) that \(P(k) \) is true for some fixed \(k \geq 0 \). That is, suppose that the algorithm moves \(k \) disks from the start tower to the end tower, following the rules, in \(2^k - 1 \) steps.

Step 4. Now we prove that \(P(k+1) \) is true, using our (hypothetical) induction assumption that \(P(k) \) is true. That is, we prove that the algorithm moves \(k+1 \) disks from the start tower to the end tower, following the rules, in \(2^{k+1} - 1 \) steps.

The proof that \(P(k+1) \) is true (given that \(P(k) \) is true) is as follows: We have to prove that the algorithm uses \(2^{k+1} - 1 \) steps, and that each of these steps is “valid”. For the steps:

\[
\text{left-hand side} = \# \text{ steps to move } k+1 \text{ disks} \\
= 2(\# \text{ steps to move } k \text{ disks}) + 1 \quad \text{by the algorithm definition} \\
= 2(2^k - 1) + 1 \quad \text{by the IH} \\
= 2^{k+1} - 1 \quad = \text{right-hand side}
\]

As for the validity of the steps, the algorithm on \(k+1 \) towers leaves the largest disk on the bottom of the start tower, then makes a recursive call on the smallest \(k \) disks. All of these moves are (by the IH) valid, and never move the largest disk. We then make one valid move, of this largest disk from the start tower to an empty tower, then again recursively move the smallest \(k \) disks (valid, by the IH).

Therefore we have shown that if \(P(k) \) is true, then \(P(k+1) \) is also true.

Step 5. The steps above have shown that for any \(k \geq 0 \), if \(P(k) \) is true, then \(P(k+1) \) is also true. Combined with the base case, which shows that \(P(0) \) is true, we have shown that for all \(n \geq 0 \), \(P(n) \) is true, as desired.