
Vector Geometry for Computer Graphics 
Bob Geitz 

January, 2007 
 

Contents 

Part I: Basic Definitions 
Coordinate Systems …………………………………………... 2 
Points and Vectors …………………………………………… 3 
Matrices and Determinants ………………………………….. 4 

Part II: Operations 
Vector addition and scalar multiplication …………………... 5 
The Dot-Product of two vectors ……………………………. 6 
Projections …………………………………………………….. 7 
The Cross-Product of Two 3D Vectors ……………………… 8 
Matrix Multiplication ………………………………………… 9 

Part III: Applications 
The equation of a line or a ray ……………………………… 10 
The equation of a plane ……………………………………... 11 
Outward-pointing normals …………………………………. 11 
Finding the viewer coordinate axes ………………………… 13 
The distance from a point to a line …………………………. 13 
The distance from a point to a plane ……………………….. 14 
Determining if a point is inside a convex polygon …………. 14 
Determining if a point is inside a convex polyhedron ……... 15 
Algorithm for finding reflection rays ………………………. 15 
 

Part IV: Ray Intersection Algorithms 
Ray-Sphere Intersection, Algebraic Version …………………. 17 
Ray-Sphere Intersection, Geometric Version ………………… 17 
Ray-Ellipsoid Intersection ……………………………………. 18 
Ray-Plane Intersection ………………………………………... 19 
Ray-Polygon Intersection ……………………………………...19 
Finding the intersection of two lines in a plane ………………. 19 
Ray-Polyhedron intersection …………………………………. 20 

 
 



 2

Part I: Basic Definitions 
 

Coordinate Systems 
Most 2D geometry is pictured with the first coordinate on the horizontal axis and the 
second coordinate on the vertical axis, as in 

 
 
The 3D situation is somewhat more complex.   Note that the following two coordinate 
systems are essentially the same; we can rotate one into the other: 

                
 

On the other hand, the following pair are different; no set of rotations will convert one 
axis into the other: 
 

                
 

The usual way to think of this is that coordinate axes have “handedness”.  Coordinate 
axes are either right-handed or left-handed.   If you label your index fingers with an “x”, 
your middle fingers with “y” and your thumbs with “z”, then you will be able to align one 
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of your hands with a given axis.  For the two systems illustrated immediately above, you 
should be able to align the fingers of your left hand with the system on the left.  This 
means it is a left-handed system.  Similarly, the system on the right matches the fingers of 
your right hand and so is a right-handed system. 

Points and Vectors 
A point in n-dimensional space is just a collection of n values that can be considered the 
point’s coordinates.  A vector in n-dimensional space is also a collection of n values.  The 
difference between a point and a vector lies not in the coordinates, but rather in the way 
we interpret these coordinates.  The coordinates of a point give it a position in space.  For 
example, the point (2, 3) might be drawn: 

 
A vector, on the other hand, provides a direction and a magnitude rather than a position.   
You can think of a vector <a, b> as extending from any point (x, y) to the  point (x+a, 
y+b).  All of the vectors in the following picture are <2, 3>, just given different starting 
points. 

 
Alternatively, the vector extending from point (x1, y1) to the point (x2, y2) is  
<x2-x1, y2-y1>.  This is an important fact that we will use in many situations. 
 
The length or magnitude of a vector is the square root of the sums of the squares of its 
coordinates.  The length of vector v is often written |v|.  For example, the length of the 
vector <2, 3> is 1332 22 =+ .  An easy way to make a vector of length 1 in a given 
direction is to first find any vector in this direction, then to divide both coordinates of 
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vector by its length.  Thus, a vector in the same direction of <a, b> but having length 1 is 

2222
,

ba
b

ba
a

++
.  Vectors with length 1 are commonly called unit vectors. 

 
For 3-dimensional geometry there are standard names for the unit vectors that point along 
the three axes: i is the vector <1, 0, 0>, j is <0, 1, 0> and k is <0, 0, 1>. 
 

 

Matrices and Determinants 

A 2-dimensional matrix is a rectangular array of numbers, as in ⎥
⎦

⎤
⎢
⎣

⎡
− 529

183
.  The size 

of such a matrix is mn × where n is the number of rows and m is the number of columns.  
Thus, the matrix above has size 32 × .  We use matrices in computer graphics to represent 
transformations, spline curves and surfaces, textures, and many other things.   
 
A determinant is an operation that can be applied to a nn × matrix to produce a single 
value.  The determinant of matrix A is often written A .   The definition of the 

determinant is recursive.  First, the determinant of a 22× matrix is bcad
dc
ba

−= .  

Thus, 21012
35
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=−= .  Then, the determinant of a 33×  matrix is defined in terms of 

3 22× determinants:  
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Note that this multiplies each element of the top row times the 22× determinant that 
results from removing that element’s row and column from the grid.  The results of these 
products are put into an alternating sum. 
 
For example, we compute  
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There are many ways to interpret the meaning of a determinant.  One simple 
interpretation concerns 2D parallelograms and 3D parallelpipeds.  In the 2D case, 
consider the vectors u = <u1, u2> and v = <v1, v2>.  Then the area of the parallelogram 
formed by u and v,  

 
is  

2121
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21
uvvu

vv

uu
Area −==  

 
Similarly, with three 3D vectors <u1, u2, u3> <v1, v2, v3> and <w1, w2, w3> we can define 
a parallelpiped, whose volume is  
 

www
vvv
uuu

Volume

21

321

321

=  

 
 
 
Determinants have many uses, but we will primarily use them to define and evaluate the 
cross product of two 3D vectors. 
 
 

Part II: Operations 
 

Vector addition and scalar multiplication 
We can add or subtract two vectors of the same size by summing corresponding 
coordinates:  

<2, 4, -1> + <5, 1, 6> = <7, 5, 5> 
We can multiply a vector by a scalar by multiplying each coordinate of the vector by the 
scalar; the result is a vector:  

<2, 5, 1>*3 = <6, 15, 3> 
 
Both of these operations have a simple geometrical interpretation.  Recall that we can 
think of a vector as providing a direction and a distance.  The sum of two vectors 
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represents moving in the direction of the first vector for its distance, then in the direction 
of the second for its distance.  For example, the picture below on the left shows two 
vectors A and B.  The picture on the right shows the sum A+B: 

                          
 
Finally, the picture below shows the sum A+B+B+B = A+3B: 

 
 
Any scalar multiple of a vector results in a parallel vector.  In fact, two vectors are 
parallel if and only if each is a scalar multiple of the other. 
 

The Dot Product of Two Vectors 
There are several ways to multiply two vectors together.  While they are all important for 
graphics, the one most frequently used is the dot-product, whose name comes from the 
fact that it is written with a dot between the two vectors.  The dot-product can be applied 
to any two vectors of the same size; it is computed by multliplying the corresponding 
coordinates of the vectors and summing all of these products.   Thus  
<a, b>• <c, d> = ac+bd.  and <1, 2, 3>• <4, 5, 6> = 4 + 10 + 18 = 32 
. 
There is a very useful geometrical interpretatioin of the dot product: If u and v are two 
vectors then ( )θcosvuvu =•  where θ is the angle between u and v.   For example, since 
cos(0) = 1, if two vectors are pointing  in the same direction then their dot product is the 
product of their lengths.   In particular, for any vector u, 2uuu =• .  Moreover, since 

( ) ( ) 0270cos90cos == oo ,  two vectors are perpendicular if and only if their dot 
product is 0.  This is one of the most important facts from vector geometry and is used 
throughout computer graphics. 
 
It should be obvious that dot products are commutative (a• b = b• a). 



 7

Projections 
It is sometimes useful to find the projection of one vector in the direction of another.  The 
following picture shows the setup for this.  We want to project vector B onto vector A.  

 
 
The following picture illustrates the derivation.  We want to find vector p, which is the 
projection of B onto A.  Angle Θ is the angle between A and B,   

 
 
 
The idea is to first find the length of p, then to multiply this length times a unit vector in 

the direction of A:  
A
App =  

Here is the derivation: 

( )
BA
BA

B
p •

== θcos  so 
A

BAp •
=  

A
A

BA
A
App 2

•
==  

 

Altogether, the projection of B onto A is A
A

BA
2

•  

 
 
We can also find the projection of a vector onto a plane.  Here is the setup: we start with 
the plane and vector B; we want to find the projection of B onto the plane, which is 
vector p; 
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To solve this we introduce vector N, the normal to the plane, and vector r, the projection 
of B onto N: 

 
 

We know how to calculate r; this is just the projection of one vector onto another: 

N
N

NBr 2

•
=  

Now note that p+r = B, so p = B-r. 
   
Altogether, the projection of B onto the plane with normal N is 

N
N

NBB 2

•
−  

 

The Cross-Product of two 3D vectors 
The cross-product is another way to multiply two vectors.  This time the result is a vector.  
Cross products are only defined for 3D vectors.   
 
There are many equivalent definitions for the cross-product.  Perhaps the most common 
definition is 
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=×  where i, j, and k are the unit vectors parallel 

to the coordinate axes.   
 
An equivalent formulation using matrix multiplication (see below if you don’t recall how 
to multiply matrices) is 
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Finally, there is a geometrical interpretation: )sin(θvunvu =× , where θ is the angle 
between u and v and n is the unit vector normal to both u and v given by the right-hand 
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rule:  if you put the index finger of your right hand in the direction of u and your middle 
finger in the direction of v, then your thumb will point in the direction of n.  This 
interpretation makes clear the most essential facts about the cross-product: it gives a 
vector normal to the two input vectors, and the cross-product of two parallel vectors is 0. 
 
Some people restate the geometrical interpretation as: the cross-product vu × is a vector 
normal to both u and v in the direction given by the right-hand rule whose magnitude is 
the area of the parallelogram determined by u and v.   
 
The main use of cross-products is in finding normal vectors.  For example, if you know 
three points in a plane and you want to find the mn × normal vector to the plane, find two 
non-parallel vectors between the three points and take the cross-product of these vectors. 
 
 
 

Matrix multiplication 
Suppose A and B are matrices.  It is possible to multiply BA×  if matrix A has size mn ×  
and matrix B has size pm × (i.e., if the number of columns of A is the same as the 
number of rows of B.)    The resulting matrix has size pn× .  The entry in the ith row and 
jth column of the result is the dot-product of the ith row of A with the jth column of B.   
 

For example, consider the product 
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. This multiplication can 

be performed because the left matrix has 3 columns and the right matrix 3 rows.  The 
entry in the first row and first column of the result is the dot product of the first row of 

the left matrix, [ ]312  with the first column of the right matrix, 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
1
1

1
.  This dot 

product is 4.  The entry in the first row, second column of the result is the dot product of 
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It is easy to see that matrix multiplication is not commutative.  Indeed, BA might not even 
be defined when AB is.  Matrix multiplication is, however, associative. 
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Matrices are used for many things in graphics. Perhaps the most typical application of 
matrices is to represent transformations.  Matrix T might represent a particular 
transformation; to apply this transformation to a point x, we multiply xT.  To first apply 
transformation T1 to x, then apply T2 to the result, we multiply xT1T2.  Because matrix 
multiplication is associate, it makes no difference if we group this as (xT1)T2  
or as x(T1T2).   The latter formulation is convenient if there are a number of points to 
which this sequence of transformations must be applied because it allows us to multiply 
T1T2 once,, and then apply the result to each point in turn with one matrix multiplication.   
Because of this, some old texts refer to matrix multiplication as “concatenating” matrices 
to represent the composition of transformations. 
 

Part III: Applications 

The equation of a line or a ray 
The y=mx+b equation for a line that you learned in high school is not very useful for  
graphics because it is limited to 2 dimensions.  We more commonly use the vector form 
of a line, which can be applied to any number of dimensions.   The equation of the line 
through point a parallel to vector v is  

p = a + tv 
Here t is a scalar parameter and p is an arbitrary point on the line.    
 
For example, suppose we need the equation of the line through points <2, 1, 3> and  
<4, 0, 5>.  A vector parallel to this line is the vector from <2, 1, 3> to <4, 0, 5>, which is 
<4-2, 0-1, 5-3> = <2, -1, 2>.  The line is then  

p = <2, 1, 3> + t<2, -1, 2> 
We get points on the line by assigning values to t.  For instance, if t=2 we get  
<2, 1, 3> + <4, -2, 4> = <4, -1, 7>.  Alternatively, we can use this equation for the line to 
get three parametric equations for x, y, and z in terms of t: 

<x, y, z> = <2, 1, 3> + t<2, -1, 2> 
so  

x = 2 + 2t 
y = 1 –t 

z = 3 + 2t 
 
In ray tracing we need the equation of a ray, or half-line.  A ray has exactly the same 
equation as a line: p = a + tv, only for rays the parameter t cannot have negative values.   
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The equation of a plane 
Suppose we need to find the equation of the plane that has normal vector N=<A,B,C> and 
that passes through the point (a, b, c): 
 

 
Let (x,y,z) be any point in the plane.  Since N is normal to the plane it is normal to each 
vector lying in the plane.  In particular, it is normal to the vector from (a,b,c) to (x,y,z); this 
vector is <x-a, y-b, z-c>.  In other words .0=−−−• czbyaxN  This equation can be 

rewritten as 0=−−−• czbyaxCBA , or as CcBbAaCzByAx ++=++ .    
 
In other words, the equation of a plane with normal vector <A, B, C> is Ax+By+Cz=constant.  
You can find the constant by plugging any point that is known to be in the plane into 
Ax+By+Cz.   
 
If you need to find the equation of the plane containing 3 known points, take the cross-
product of two non-parallel vectors connecting these points to get the normal; then proceed 
as above.  For example, to find the plane containing (1, 1, 1), (1, 0, 1) and (2, 1, 2), we first 
need two vectors.  The vector from (1, 0, 1) to (1, 1, 1) is <0, 1, 0>.  The vector from (1, 1, 1) 
to (2, 1, 2) is <1, 0, 1>.  The cross-product of <0, 1, 0> with <1, 0, 1> is <1, 0, -1>.   Thus, 
the equation of the plane is x-z = constant.  We can put any of the given points into this to see 
that the constant is 0.  The plane is x-z = 0. 
 

Outward-pointing Normals 
A polygon is a body that lies in a plane and is bounded by edges that are line segments, like a 
triangle or an octagon.  A polyhedron is a 3D body bounded by faces that are polygons, such 
as a cube or a pyramid. Sometimes it is helpful to find an outward-pointing normal to a 
polygon or a polyhedron.  In both cases this is a vector that is normal to a given face or edge 
and points towards the outside of the body.  
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Consider first the case of a polyhedron: 

 
If the vertices of the face are numbered p0, p1, … in a counter-clockwise order then we can 
compute the outward-pointing normal from the cross-product of two of the edges.  For 
example, it is given by ( ) ( )1201 pppp −×− , or starting from any point pi, 
( ) ( )121 +++ −×+ iiii pppp .  The right-hand rule for cross-products guarantees that this is the 
outward-pointing normal and not the inward-pointing normal. 
 
The case of a polygon is similar: 

 
This time we want to find the normal n that lies in the same plane as the polygon and is 
normal to a given edge.  If Nis the normal to this entire plane and if the edge in consideration 
is the edge from pi to pi+1 (where again the vertices have been numbered counterclockwise 
starting from p0), then the outward pointing normal is ( ) Nn ×−= + ii pp 1 .  Of course, if N is 
not given it can be computed from the cross-product of any two edges of the polygon. 
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Finding the viewer coordinate axes 
Viewer coordinates are frequently specified in terms of a left-handed coordinate system 
with origin at the viewer’s position and z-axis pointing in the direction the viewer is 
looking. 

 
Rather than directly giving the three coordinate axes, many system prefer to determine 
this system from the viewer’s position, a lookat point in the direction the viewer is 
looking, and an up vector that specifies the vertical direction.  Unless there is additional 
information, we assume that the viewer’s x-axis is orthogonal to the up vector.  If the 
viewer is standing vertically her y-axis will point in the direction of the up vector, but the 
viewer can lean over and still have her x-axis orthogonal to this up vector. 
 
We will find vectors Vx, Vy and Vz parallel to the three axes.  First, Vz points from the 
viwer to the lookat point: Vz = lookat-viewer.  Next, Vx is normal to both Vz and the up 
vector.  From the right-hand rule for cross-products we see that upVV zx ×= .  Finally, 

zxy VVV ×=  
 

The distance from a point to a line 
Suppose we have the line x = tv + p1  (a line through point p1 parallel to vector v) and a 
separate point p.  We want to find the distance from p to the line.  Let w be the vector 
from p1 to p.  The following picture shows the setup: 

 
 

We know that the cross-product of v and w is a vector whose length is the area of the 
parallelogram determined by v and w.  This area is also given by the length of v 
multiplied times the distance from p to the line that forms the base of the parallelogram.  

Thus distvwv =× , or 
v

wv
dist

×
= .  An even simpler formation is wudist ×= , where 

u is a unit vector parallel to the line and w is an vector from the line to p.   
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The distance from a point to a plane. 
A similar problem is finding the distance from a point p=(p1, p2, p3) to the plane 
Ax+By+Cz=D.  Let a=(a1, a2, a3) be any point in the plane.   

 
 
Let vector v be the vector from a to p. As you can see from the picture, the distance from 
p to the plane is the length of the projection of v  onto the normal vector  

N = <A, B, C>. The projection is ( ) 2N
NNv • .  This vector has length 

N
Nv • . 

We know that N=<A, B, C>, v=<p1-a1, p2-a2, p3-a3>, and since a is a point in the plane, 
Aa1+Ba2+Ca3=D.  we can simplify the distance from p to the plane to  

222

321

CBA

DCpBpAp

++

−++
 

 

Determining if a point is inside a convex polygon 
Given a polygon (which by definition lies in a plane) and a single point in the same plane, 
we would like an algorithm for determining whether the point lies inside the polygon.  
The following algorithm only applies to convex polygons – those with the property that 
given any two points inside the polygon, the entire line segment connecting those two 
points must lie inside the polygon.  Such polygons are the intersection of half-planes, 
which means that if you extend the boundary edges into infinite lines the polygon will 
always lie completely on one side of each edge line.  If a point is on the same side of each 
edge as the polygon, then it must lie inside the polygon. 
 
For this algorithm we assume that the vertices of the polygon are numbered p0, p1, p2, …. 
in counterclockwise order.  Edge ei extends from pi to pi+1.  Vector N is normal to the 
plane containing the polygon; this is easy to construct as 10 ee × , or as 1+× ii ee  for any i.  
Vector ni is an outward-pointing normal for edge ei; we can construct this as Nei × .  
Here is an illustration of all of these items: 
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Note that ei=pi+1-pi, and ni is normal to ei, so ( ) 01 =−• + iii ppn .  This means that 

iiii pnpn •=• +1 .  It is easy to extend this to show that iii pnpn •=• for any point p on 
the line defined by edge ei.  This lets us split the plane into two regions: points p for 
which iii pnpn •≤•  and points p for which iii pnpn •≥• .  Which side is the polygon 
on?  Consider point pi+ni, which is outside the polygon because ni is an outward-pointing 
normal.  ( ) iiiiiiiiiiii pnnpnnnpnnpn •>+•=•+•=+• 2 .  Thus the half-plane 
containing points p where iii pnpn •≥• is on the side of the edge pointed to by the 
outward-pointing normal; it does not contain the polygon.  The half-plane defined by 

iii pnpn •≤• does contain the polygon. 
 
Our algorithm for determining if point p is inside the polygon is thus: 

p is inside the polygon if iii pnpn •≤•  for each edge ei, where ni is the outward-
pointing normal to edge ei. 
 

Determining if a point is inside a convex polyhedron 
The argument above for convex polygons also applies to convex polyhedron: 

p is inside the polyhedron if iii pnpn •≤•  for each face fi, where ni is the outward-
pointing normal to face fi. 

 

Algorithm for finding reflection rays 
The Phong model for specular reflections has light reflecting from a surface in such as 
way that angle of incidence equals angle of reflection.  To use this model we need to find 
the reflection direction, given the surface normal and the direction of the light source: 
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In this picture L is the direction of the light source and R is the direction we want to 
calculate.  N is the surface normal.  The angle between N and L should be the same as the 
angle between N and R.   
 
We can solve this problem using projections.  The following diagram shows the 
additional parts we need: 

 
Vector p is the projection of L onto N, so N

N
LNp 2

•
= .  Vector q connects L with its 

projection: L+q=p, so q=p-L.  Finally, R=p+q=2p-L.  Putting all of this together, we see 
that 

LN
N

LNR −
•

= 2

2  

If we choose N to be a unit normal to the surface we can make this even easier: 
( ) LNLNR −•= 2  

In any case this formula produces a vector R with the same length as L. 
 

Part IV: Ray Intersection Algorithms 
This is a collection of algorithms used in ray tracing for finding where a ray intersects 
various shapes.  The ray has an equation of the form P = P0 + tv, where P0 is the starting 
point of the ray and v is a vector parallel to the ray.  These algorithms generally give a 
value of the parameter t.  If t < 0 there is no intersection; if t >=0 you can use the 
expression P0 + tv to get the actual point of intersection.  All of these algorithms make no 
assumption about the length of v.  You need to be careful about using algorithms off the 
internet for this; many other algorithms have an unstated assumption that .1=v  
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Ray-Sphere Intersection, Algebraic Version 
This uses the quadratic formula to find t.  Our ray is P = P0 + tv; the sphere is centered at 
point C and has radius r.  

 
 
A vector formulation of the sphere is 2rCP =− , or ( ) ( ) 2rCPCP =−•− .  Inserting 

the ray definition of P gives ( ) ( ) 2
00 rCtvPCtvP =−+•−+ .  To simplify this create a 

new vector A=C-P0.  Our equation is now  ( ) ( ) 2rAtvAtv =−•− .  We can multiply this 

out and collect terms, remembering that 2vvv =• : 

( ) .02 2222 =−+•− rAAvtvt  
It is now a simple matter to use the quadratic formula to find t: 

( ) ( ) ( )
2

222

2

442

v

rAvAvAv
t

−−•±•
=  

Of course, if the quantity inside the square root is negative there is no intersection. 
 

Ray-Sphere Intersection, Geometric Version 
This is an alternative way to find the intersection.  It does more geometry and gives a 
simpler calculation, though it is a bit harder to follow.  In many situations it gives a 
quicker exit when the ray misses the sphere. 

 
Again we let A=C-P0; this is a vector from the starting point of the ray to the center of the 

sphere.  Let R be the projection of A onto v; v
v

AvR 2

•
= .  Now let q be the distance from 

the center of the sphere to the ray.  Because R is the projection of A, the picture above 
shows that .222 ARq =+   Of course, if q > r then the ray does not intersect the sphere 
and we can stop.   If there is an intersection we let h be half of the length of the chord 
formed by the ray inside the circle.  The picture above shows that 222 rqh =+ , so 
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22 qrh −= .  Finally, the distances of the two intersection points from P0 are hR −  

and hR + .  We get the actual t-values by scaling these by the length of v. 
Altogether, here is the sequence of calculations needed to find the intersection: 

A=C-P0 

v
v

AvR 2

•
=  

2RAq −=  
If q > r halt; there is no intersection. 

22222 ARrqrh −+=−=  

The two points are v
v

hR
P

−
+0    and v

v
hR

P
+

+0  

 

Ray-Ellipsoid Intersection 
An ellipsoid is the 3D analog of an ellipse.  One way to write an equation for it is  
( ) ( ) ( )

.12
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3

2

2
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of its three major axes.  To give a vector form of this equation, let 
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represents a scaling transformation.  Then for any point P=(x, y, z)  we have 
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xPM .  An ellipsoid centered at C with half-axes of lengths a, b, and c  

consists of points P where ( ) .12 =− MCP   Note that this says that an ellipsoid is a body 
that can be scaled into the unit sphere. The rest of the derivation follows closely the 
algebraic form of the ray-sphere intersection algorithm.  We can write the ellipsoid 
equation as ( ) ( ) .1=−•− CMPMCMPM We want to find such points where P=P0+tv.  
Inserting this into the equation gives  
( ) ( ) 100 =−+•−+ CMtvMMPCMtvMMP .  Let v1 = vM and let P1=P0M-CM.  Our 

equation is ( ) ( ) .12 2
1

2
11

2
11111 =+•+=+•+ vtvtPPtvPtvP   This is easy to solve for t 

with the quadratic formula.   
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Ray-Plane Intersection 
This intersects a ray with an infinite plane.  Once again, we have ray P = P0 + tv.  A plane 
has equation Ax+By+Cz=D.  We can also write this DPN =• , where N=<A,B,C> is 
the normal to the plane.  Inserting P = P0 + tv into this, we have ( ) DtvPN =+• 0 , or 

0PNDvtN •−=• .  This is easy to solve for t:  
vN

PND
t

•
•−

= 0 .  Of course, this makes 

no sense if 0=• vN , but in that case v is orthogonal to the plane’s normal and so the ray 
either is completely contained in the plane or else misses the plane altogether. 
 
Of course, once we have the appropriate value of t we can obtain the actual point of 
intersection from P = P0 + tv. 
 

Ray-Polygon Intersection 
To intersect a ray with a polygon, first find the plane that contains the polygon (its 
normal can be found from the cross-product of any two non-parallel edges of the 
polygon) and find the point where the ray intersects that polygon.  You must then decide 
if this point is inside the polygon.  If the polygon is convex you can use the algorithm 
given above. 
 
This algorithm fails in the case where the ray is orthogonal to the normal to the plane 
containing the polygon.  In many situations it is sufficient to report “no intersection” in 
this case.  If, however, the ray lies in the same plane as the polygon and your need to find 
the intersection, it can be found by intersecting the ray with the line determined by each 
edge of the polygon and testing whether the resulting point is inside the polygon.  An 
algorithm for finding the intersection of two lines in a plane, or a ray with a line in the 
same plane,  is given below.  The smallest positive t-value that satisfies this will yield the 
desired intersection. 
 

Finding the intersection of two lines in a plane 
This algorithm can be used either to intersect two lines in a plane, or to intersect a ray 
with a line in the same plane.    
 
Suppose we have two lines: P = P0 + tv0 and P = P1 + sv1.  Note that it is important that 
the two lines have different parameter: they could intersect, for example, at a point given 
by t=1 on one line and s=2 on the other line.  We want to find the values of t and s that 
result in the same point P on each line.  Let N be the normal to the plane containing these 
lines; this can be found, for example, as 10 vvN ×= .  Let n1 be the normal in the plane to 
vector v1.  As we have seen before, every point on the line P = P1 + sv1 has 

111 PnPn •=• .  We want to find a point on the first line that has this same property.  
Thus, we set ( ) 11001 PntvPn •=+•  and solve for t.  This gives  
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With this value of t the point of intersection is P0 + tv0 
 
 

Ray-Polyhedron intersection 
To intersect a ray with a polyhedron, we find the intersection of the ray with the plane 
containing each of the faces of the polyhedron, and then test whether the resulting points 
are inside the polyhedron.  An algorithm is given above for determining whether a point 
is inside a convex polyhedron, so if the polyhedron is convex this solves the problem.   
Again, if the polyhedron is convex and we know the ray starts outside the polyhedron, it 
is sufficient to intersect the ray with the front-facing faces.  These are the faces whose 
outward pointing normals are in the opposite direction from the ray.  That is, if N is the 
outward-pointing normal and the ray is P = P0 + tv, then we need to check the 
intersection of the ray with the face only if 0<• vN . 
 
 
 


