
Homework #1: Search for a Restaurant!
CSCI 364 Fall 2021 Oberlin College
Due: Wednesday October 27 at 2:30 PM

Background

You recently purchased a brand-new autonomous car from Alset (whose motto is “The last car
you’ll ever need – you’re all-set!”). However, after riding around for a few weeks, you’ve
realized that its pathfinding feature seems slow and doesn’t always choose the best routes to your
intended destinations. Searching around online, you find message board posts suggesting they
might have used Breadth First Search as their algorithm of choice. After taking CSCI 364, you
know this to be a poor decision!

You have a little free time one week and decide to implement your own pathfinding algorithm to
improve your car’s driving abilities. Luckily, you discover Alset cars were programmed in both
Python and Java, so you have the skills necessary to update your car’s software.

Your car comes with some predownloaded maps for you to work with, as well as some helpful
classes already implemented for working with those maps:

1. Map, which models a graph representation of the intersections in a map and the roads that
connect those intersections,

2. MapNode, representing an intersection in the map,
3. Problem, which converts the map into a search problem, providing access methods

described later in the assignment instructions, and
4. State, representing a location in the Problem [only in Java; in Python these are a

tuple of (latitude, longitude) pairs]

Gitting Started

To begin this assignment, please follow this link:

https://classroom.github.com/a/_uTxs5II

Assignment

Over the next week, you will implement three search algorithms in either Python or Java to be
uploaded into your car:

1. BFS (to verify that your suspicions about their design decision are correct),
2. A* Search (to find the optimal routes quickly), and
3. Uniform Cost Search (to verify that A* finds the optimal routes).

Your program should be called either Search.py (in Python) or Search.java (in Java), so that it is
called with either:

 python Search.py <MapFilename>

or

 java Search <MapFilename>

The output of your program should contain the following information from running each search
algorithm on the inputted map:

1. The length of the path found (i.e., the number of actions your car needs to take to get to
the first goal found)

2. The cost of the path
3. Which goal was reached, as a (latitude, longitude) point
4. The number of nodes expanded during search
5. The time spent searching

An example output of your program might be:

Map: mapO.dat

BFS Path Length: 63
BFS Path Cost: 0.08280000000000001
BFS Goal Reached: (41.2904548, -82.2184917)
Nodes Expanded with BFS: 1274
Time Spent with BFS: 0.019654035568237305

UCS Path Length: 64
UCS Path Cost: 0.08240000000000001
UCS Goal Reached: (41.2904548, -82.2184917)
Nodes Expanded with UCS: 982
Time Spent with UCS: 0.02384805679321289

A* Path Length: 64
A* Path Cost: 0.08240000000000001
A* Goal Reached: (41.2904548, -82.2184917)
Nodes Expanded with A*: 285
Time Spent with A*: 0.014477014541625977

To aid your search, you will be given a model of the search problem represented by the Problem
class, containing the following important functions:

• startState() providing your car’s initial location as a tuple/State
(Latitude, Longitude)

• actions(state) providing a list of neighboring intersections in the map that you can
reach in one step from the tuple state

• result(state, action) providing the location of the intersection in the map you will
reach after choosing action in state

• cost(state, action) providing the cost of choosing action in state
• goal(state) determining whether state is a goal state (i.e., a favorite restaurant)
• goalStates() providing a list of all favorite restaurants in the map

Within the README.md file that comes with your GitHub repository, you should include:

1. The output of your program for all four maps for each algorithm.
2. A paragraph comparing and contrasting the different algorithms based on your results

(including a description of the heuristic you chose to use in A*). Questions to think
about include:

a. Did all of the algorithms find paths to the same goals?
b. Did they find different paths with different costs?
c. How did the amount of work they performed compare (i.e., the number of nodes

expanded and the time spent searching)?
3. A short paragraph describing your experience during the assignment (what did you enjoy,

what was difficult, etc.)
4. An estimation of how much time you spent on the assignment, and
5. An affirmation that you adhered to the honor code

Please remember to commit your solution to your repository on GitHub. You do not need to
wait until you are done with the assignment; it is good practice to do so not only after each
coding session, but maybe after hitting important milestones or solving bugs during a coding
session. Make sure to document your code, explaining how you implemented the three search
algorithms.

Honor Code

Each student is to complete this assignment individually. However, students are encouraged to
collaborate with one another to discuss the abstract design and processes of their
implementations. For example, please feel free to discuss the pseudocode for each search
algorithm to help each other work through issues understanding exactly how the algorithms
work. At the same, since this is an individual assignment, no code can be shared between
students, nor can students look at each other’s code.

Grading Rubric

Your solution and README will be graded based on the following rubric:

Program flow: /10 points
BFS implementation: /10 points
UCS implementation: /15 points
A* implementation: /20 points
Output for all maps/algorithms: /20 points
Answers to README questions: /20 points
Appropriate code documentation: /5 points

By appropriate code documentation, I mean including a header comment at the top of each file
explaining what the file provides, as well as at least one comment per function explaining the
purpose of the function.

