
Assignment #2: Sudoku (Constraint Satisfaction Problems) 
CSCI 364     Fall 2021     Oberlin College 
Due: Monday November 15 at 11:59 PM 

 
Background 
 
In class, we used Sudoku puzzles as an illustrative example of Constraint Satisfaction Problems 
(CSPs) in AI.  In a CSP, the goal is to find a complete, consistent assignment of values to a set of 
variables 𝑋 (taken from their domains 𝐷) satisfying a set of constraints 𝐶 that limit the valid 
combinations of variable values.  In this assignment, you will have an opportunity to develop a 
program using CSP solution techniques to solve Sudoku puzzles. 
 
As a reminder, a Sudoku puzzle is a 9x9 grid (81 variables) where each cell in the grid can take 
on the integer values 1-9 (the domain of each variable).  A solution to a Sudoku puzzle is an 
assignment of values for each cell in the grid such that no two cells in the same row, column, or 
3x3 square have the same value. 
 
For example, for an initial configuration of a Sudoku puzzle, you might be given: 
 

..3|.2.|6.. 
9..|3.5|..1 
..1|8.6|4.. 
----------- 
..8|1.2|9.. 
7..|...|..8 
..6|7.8|2.. 
----------- 
..2|6.9|5.. 
8..|2.3|..9 
..5|.1.|3.. 

 
which has the solution: 
 

483|921|657 
967|345|821 
251|876|493 
----------- 
548|132|976 
729|564|138 
136|798|245 
----------- 
372|689|514 
814|253|769 
695|417|382 



Gitting Started 
 
 
You can get started on the assignment by following this link: 

https://classroom.github.com/a/H9jJ3Bg6 
 
Assignment 
 
Your assignment is to write a program in Python or Java that can take a set of Sudoku puzzles 
as input from a file, models each puzzle as a CSP, and outputs solutions to each puzzle.  You 
should make use of both Constraint Propagation (i.e., arc consistency AC3) and Backtracking 
Search algorithms as part of your solution.   
 
Unlike the previous homework assignment, there is no code base to start with.  Instead, you are 
free to develop your program and represent your data structures however you wish.  Also, you 
are allowed to work in groups of two students (only one needs to submit the solution on 
GitHub). 
 
Your GitHub repository will only initially contain two files of Sudoku puzzles:  
 

1. euler.txt, a set of Sudoku puzzles from Project Euler https://projecteuler.net/problem=96 
2. magictour.txt, a more difficult set of Sudoku puzzles from http://magictour.free.fr/top95 

Each file contains a multiple Sudoku puzzles (one per line), in the following format: 

• Each line is a string of 81 characters, where characters in positions 0-8 correspond to the 
first row of the puzzle, characters in positions 9-17 correspond to the second row of the 
puzzle, etc. 

• Known values are represented by the digits 1-9 
• Initially unknown values are represented by a decimal point . 

 
Your program should be able to read in these puzzles, solve them, then output the solutions in 
the same format (a string of 81 digits, followed by a newline character) in the same order they 
were read in from file.   
 
Please call your program either SudokuSolver.py (in Python) or SudokuSolver.java (in Java), so 
that it is called with either: 
 
     python3 SudokuSolver.py <PuzzleFile> 
 
or  
 
     java SudokuSolver <PuzzleFile> 
 
 
You should not import any modules or libraries not already built into Python and Java, nor 
should you use any code from online sources.



Within your README.md file, you should include: 
 

1. The solutions to all 145 puzzles in the same format as the input files (please put all of the 
euler.txt solutions under a header called “Euler” and the magictour.txt solutions under a 
header called “Magic Tour”)  

2. A couple paragraphs documenting how you designed and implemented the data structures 
used in your program – how did you represent the sudoku puzzle a CSP?  What design 
options did you consider, and how did you decide on this implementation? 

3. A couple paragraphs describing each of the algorithms you implemented.  What do they 
do, and how do they do it?  What choices did you make while implementing them? 

4. A paragraph discussing the runtime efficiency of your program.  Don’t worry about 
calculating order notation, but you should describe how quickly your program operates 
on the puzzles.  Did you notice certain trends?  What did you do to improve the runtime 
of your implementation so that it could solve the puzzles quickly?  Note: my unoptimized 
Python solution solves magictour.txt in 7 minutes, so yours shouldn’t need an hour.  Part 
of your grade will be based on the runtime of your program. 

5. A short paragraph describing your experience during the assignment (what did you enjoy, 
what was difficult, etc.) 

6. An estimation of how much time you spent on the assignment, and 
7. An affirmation that you adhered to the honor code  

 
Please remember to commit your solution to your repository on GitHub.  You do not need to 
wait until you are done with the assignment; it is good practice to do so not only after each 
coding session, but maybe after hitting important milestones or solving bugs during a coding 
session.  Make sure to document your code, explaining how you implemented the CSP as a data 
structure, as well as the algorithms used to solve the CSP.   
 
Honor Code 
 
Each student is to complete this assignment with no more than one partner.  However, students 
are encouraged to collaborate with one another to discuss the abstract design and processes of 
their implementations.  For example, please feel free to discuss the pseudocode for the AC3 and 
Backtracking Search algorithms to help each other work through issues understanding exactly 
how the algorithms work.  At the same, no code can be shared between groups, nor can groups 
look at each other’s code. 
 
And please be careful – there are many Sudoku solvers with freely available code online.  This is 
a popular assignment and fun exercise for many programmers.  It is easy to accidentally stumble 
upon someone else’s solution, so please do not look at or copy anyone else’s code (which I don’t 
expect to be a problem!). 
  



Grading Rubric 
 
Your solution and README will be graded based on the following rubric: 
 
Program flow: /10 points 
Implementing Sudoku as a CSP: /15 points 
Constraint Propagation implementation: /10 points 
Backtracking Search implementation: /15 points 
Program efficiency: /5 points 
Correct solutions to the Euler puzzles: /15 points 
Correct solutions to the Magic Tour puzzles: /10 points 
Answers to README questions: /15 points 
Appropriate code documentation: /5 points 
 
By appropriate code documentation, I mean including a header comment at the top of each file 
explaining what the file provides, as well as at least one comment per function explaining the 
purpose of the function. 
 


