
Assignment #4: Stochastic Robot Navigation (Q-Learning) 
CSCI 364     Fall 2021     Oberlin College 

 
 
Background 
 
In HW3, we considered a grid world example where an agent moves around in a 3x3 grid and 
puts out wildfires.  Grid worlds are a common type of problem that we use for the initial testing 
and evaluation of our decision-making algorithms because they are small enough to 
conceptualize but complex enough to include a variety of states/actions/rewards/etc.  
 
In this homework assignment, we consider another grid world example where a robot agent 
moves around from a start state S (in the bottom left corner) and attempts to reach a goal state G 
(in the top right corner).  The agent earns a small cost for each movement (-0.1), a positive 
reward (+5) for reaching the goal G, and a negative reward (-5) for accidentally falling into a pit 
P right below the goal.  Unfortunately, the robot’s motors are not perfect, meaning that 
sometimes it ends up in a different location from where it intended to go.  Thus, the next state 
transitions are stochastic, meaning we cannot simply solve this problem using Search algorithms 
(e.g., A* Search).  A summary of the world is given in Chapter 17 of the (optional) textbook. 
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Figure 1: The Robot’s Grid World 

S = Start Location       G = Goal Location       P = Pit Location       X = Obstacle 
 
Assignment 
 
Your assignment is to write a program in Python or Java that uses Q-Learning to enable the 
robot to learn how to navigate from its starting location in the bottom left corner to the goal 
location in the top right corner.  
 
You can get started on the assignment by following this link: 

https://classroom.github.com/a/V1Ac39yO 
 
Please call your program either learner.py (in Python) or Learner.java (in Java), so that it is 
executed with either: 
 
     python3 learner.py <alphaValue> <epsilonValue> 
 
or  
 
     java Learner <alphaValue> <epsilonValue> 



where <alphaValue> is a decimal number between 0 and 1 to use for the learning rate 𝛼 in the 
Q-Learning update rule and <epsilonValue> is a decimal number between 0 and 1 to use for 
the exploration rate 𝜖 in the 𝜖-greedy exploration-exploitation algorithm.  Note: if the user passes 
in a value of 0 for <alphaValue>, then your agent should instead use 𝛼 = 1	/	𝑛(𝑠, 𝑎) where 
𝑛(𝑠, 𝑎) tracks the number of times the agent has thus far chosen action 𝑎 in state 𝑠.  For this 
assignment, fix 𝛾 = 0.99. 
 
I’ve provided you with a Grid class that represents the grid above.  The only methods you 
should need to use from this class are: 

1) generateStartState(), which returns the starting state for the robot 

2) generateNextState(state, action), which takes in the current state and a 
chosen action as parameters and returns a random next state for the agent 

3) generateReward(state, action), which also takes in the current state and a 
chosen action as parameters and returns a reward for the agent (to use for reinforcing 
that action choice) 

 
Also, you will want to use the ABSORBING_STATE in Grid to know when your agent has 
finished an episode – once this is the current state, your agent is done!  The possible actions the 
agent can take are represented by the strings “up”, “down”, “left”, and “right” in the 
actions instance variable of the Grid class. You should use 𝜖-greedy to choose your actions. 
 
An episode in this environment starts in the start state and continues as the agent keeps choosing 
actions until the current state is the Grid.ABSORBING_STATE (which occurs after the agent 
either reaches the goal or the pit).  For each episode, you should keep track of the cumulative 
reward earned by the agent for that episode: 
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where it takes H steps to reach ABSORBING_STATE (H might vary from episode to episode).  
You should run the agent for 100 total episodes each time your program is executed.  You should 
not reset the Q-Table [nor the 𝑛(𝑠, 𝑎) values] between these 100 episodes so that the agent can 
remember what it has learned in previous episodes to help it do better in the current episode. 
 
Experiments 
 
After your program is implemented, you will conduct two sets of experiments to see how the 
learning rate 𝛼 and exploration rate 𝜖 affect the agent’s behavior and performance. 
 
For the first experiment, use an exploration rate 𝜖 = 0.10.  Then, use five different learning rates 
𝛼 = 0.50, 0.25, 0 [for the decaying learning rate 1	/	𝑛(𝑠, 𝑎)], and two values of your choosing.  
Record the cumulative rewards earned by the agent across all 100 episodes for each learning rate 
𝛼 and plot them on a line chart where the x-axis is the episode number, the y-axis is the 



cumulative rewards and you have five lines (one for each 𝛼 value).  You can use any program 
you want to create these line charts; some options include Excel, R, and Python with matplotlib.  
Please save the line chart as an image file and upload it to your GitHub repository. 
 
For the second experiment, use the best learning rate from your first experiment.  Then, use five 
different exploration rates 𝜖 = 0.01, 0.05, 0.10 and two of your choice.    Once again, record the 
cumulative rewards earned by the agent across all 100 episodes for each exploration rate 𝜖 and 
plot them on a line chart where the x-axis is the episode number, the y-axis is the cumulative 
rewards and you have five lines (one for each 𝜖 value).  Again, save the line chart as an image 
file and upload it to your GitHub repository. 
 
Within a README file, you should include: 
 

1. A paragraph (5-10 sentences) comparing the results in your line chart from the first 
experiment.  What trends did you observe about the agent’s learning?  How did the 
agent’s performance change as you varied the learning rate 𝛼?  Which learning rate did 
you find led to the best performance?  Please make sure to list the five learning rates 
compared in your experiment. 

2. A paragraph (5-10 sentences) comparing the results in your line chart from the second 
experiment.  What trends did you observe about the agent’s learning?  How did the 
agent’s performance change as you varied the exploration rate 𝜖?  Which exploration rate 
did you find led to the best performance?  Please make sure to list the five exploration 
rates compared in your experiment. 

3. Based on your results from both experiments, what advice would you offer someone new 
to reinforcement learning about how to choose appropriate values for 𝛼 and 𝜖? 

4. A short paragraph describing your experience during the assignment (what did you enjoy, 
what was difficult, etc.) 

5. An estimation of how much time you spent on the assignment, and 
6. An affirmation that you adhered to the honor code  

 
Please remember to commit your solution to your repository on GitHub.  You do not need to 
wait until you are done with the assignment; it is good practice to do so not only after each 
coding session, but maybe after hitting important milestones or solving bugs during a coding 
session.  Make sure to document your code, explaining how you implemented the data 
structures and algorithms for Q-Learning. 
 
Honor Code 
 
Each student is allowed to complete this assignment with a single partner or alone.  Students are 
encouraged to collaborate with one another to discuss the abstract design and processes of their 
implementations.  For example, please feel free to discuss the pseudocode for the Q-Learning 
and 𝜖-greedy algorithms to help each other work through issues understanding exactly how the 
algorithms work.  At the same, since this is a pair-programming assignment, no code can be 
shared between groups, nor can students look at code from someone other than your partner. 
 
 



Grading Rubric 
 
Your solution and README will be graded based on the following rubric: 
 
Program flow: /10 points 
Q-Learning implementation: /25 points 
𝜖-greedy implementation: /10 points 
Correct learned behaviors: /10 points 
Line charts from your experiments: /15 points 
Answers to README questions: /25 points 
Appropriate code documentation: /5 points 
 
By appropriate code documentation, I mean including a header comment at the top of each file 
explaining what the file provides, as well as at least one comment per function explaining the 
purpose of the function. 
 


