240

Chapter 9

Graphics and User
Interfaces

In the early days of personal computers Macintosh, Windows, and Unix systems
had completely different sets of tools for creating graphical user interfaces. Port-
ing a program from one system to another was very difficult because there was
no simple way to translate the interface design from one platform to another.
This was a difficult situation for both programmers and users. In 1991 John
Ousterhout, who was a professor at UC Berkeley, announced the tk toolkit for
building user interfaces. This was a system that could be implemented on all
of the major platforms and programs would run the same way on any of them.
tk is now built into the operating systems of almost all computers. Python
provides a module called tkInter to interface with the tk library. In this chapter
we will see ways to make use of this module.

This chapter makes lots of use of classes and subclasses, so if you are not
on top of that material you might want to review Chapter /refChapter8 before
proceeding. In this chapter you will see some of the great advantages of pro-
gramming with classes: we can use the class structure to hide most of the ugly
implementation details and only keep in front of us the portions of the code
that change for our particular program. This makes user-interface program-
ming, which used to be the realm of advanced professionals, accessible to all
programmers.

241

242 CHAPTER 9. GRAPHICS AND USER INTERFACES

9.1 Tk Concepts and Terminology

To get started wth tk we need a little terminology. A widget is any kind of
graphical element: a window, a button, a checkbox, or anything else that holds
information that the user can interact with. A frame is any kind of window that
can hold other widgets. A canvas is a specific type of window that allows us to
draw into it. Buttons are widgets you click on, text boxes are widgets you can
write it, scales are widgets that allow you to select one value from a range of
values, and labels are widgets that hold a string they are like text boxes only
not interactive. tk treats a menu as a button when you click on it the menu
opens up and displays a list of items to choose from; you select an option by
clicking on one of these items. There are a few more widgets in tk, but we will
see those later. Each of the widgets is represented in tk by a class; we make a
widget by constructing an object of the class.

A typical interface for a program will have a main window that holds the
entire interface. At the top of this window is a frame that I call a "menu bar”;
this holds the menu items, buttons, scales and so forth that control the program.
Below the menu bar is a canvas on which we can draw. The program that creates
this sets up the widgets and then calls the mainloop() method of the Frame class.
This method waits for user interactions and responds to them. Its actual code
is more complex, but pseudo-code for the mainloop() method is

def mainloop(self):
while True:
if there—is—user—interactio ():
respond—to—user—interaction ()

You will notice that there is no way out of this loop. The Frame class has a
method quit() that exits you from the loop and from the program. If you
want to have an animation running on the canvas, you can call an Animate()
function for the program. This is similar to mainloop() only it does one step of
the animation each time around the loop:

def Animate(self):
while True:
if there—is—user—interactio ():
respond—to—user—interaction ()
<do one step of the animation>

Program 9.1.1, which follows, shows a complete graphical program. This is
a relatively simple program, with one button and one menu. The menu has
options that allow for different strings to appear in a label widget below the
control items. Here is a picture of the window this program creates:

" e)

Quit | Talk

Howdy

9.1. TK CONCEPTS AND TERMINOLOGY 243

The program is simple, but it has all of the elements of more complex GUIs.
You can use it as a template for future programs. We will discuss the program
in general terms here, then give details for each of the widgets it contains.

Program 9.1.1 creates a class GUI that is a subclass of tklnters standard
Frame class. In the main() function it constructs and instance of this class and
calls the mainloop() method of the Frame class. That is all it does; the rest is
handled by the Python system.

Since class GUI is a subclass of Frame, the first thing the constructor for
class GUI does is to call the Frame constructor: Frame. __init__ (). In addition
to self, this has one required argument: the parent object of the Frame being
constructed. All widgets need this argument for their constructors. In this
case the Frame being constructed is a top-level window; it has no parent, so
we pass the "unconstructed object” None. The call to the grid() method of
the Frame class makes this window visible. All widgets have a grid() method.
Until you call it the objects will exist but not be visible. There are several
kinds of arguments you can give this method. If you call the method with no
arguments it makes the widget visible and places it wherever the Python system
thinks appropriate. If you call it with row and column arguments, as we do with
some of the other widgets, the widget will be made visible and placed at in this
location within its parents window.

Next, the constructor calls a function to create a menu system, then a func-
tion to create a quit-button; both of these are placed in row 0 of the windows
grid. Finally, it creates a Label widget and places it in row 1 of the grid. A
string variable called outputString is created to supply the text of this widget.
We change labels by modifying this string variable.

Here is the full text of the program. We will follow this with more details
about the various widgets created in the program.

244 CHAPTER 9. GRAPHICS AND USER INTERFACES

from tkinter import x*

class GUI(Frame):
def __init__(self):
Frame. __init__(self, None)
self.grid ()

MenuBar = Frame(self)
MenuBar. grid ()

self.makeTalkMenu(MenuBar)

QuitButton=Button (MenuBar, text="Quit" ,command=self.quit)
QuitButton. grid(row = 0, column = 0)

self.outputString = StringVar(value = "")
PrintBox = Label (MenuBar, textvar=self.outputString)
PrintBox.grid(row = 1, column = 0, columnspan=2);

def makeTalkMenu(self, MB):

Talk_button = Menubutton(MB, text='Talk")

Talk_button.menu = Menu(Talk_button)

Talk_button ['menu’] = Talk_button .menu

Talk_button.grid(row = 0, column = 1)

Talk_button.menu.add_command(label="Say Hi',\
command=self . hi)

Talk_button .menu.add_command(label="Say Bye', \
command=self .bye)

def hi(self):
self.outputString.set (" Howdy")

def bye(self):
self.outputString.set("Bye bye")

def main():
window = GUI()
window . mainloop ()

main ()

Program 9.1.1: A first GUI program

9.1. TK CONCEPTS AND TERMINOLOGY 245

Menus

In TkInter, a "menu” consists of

1. A menu button, which is the top-level string the user clicks on to display
the menu options.

2. A menu of items, one of which will be selected when the user clicks on it.
We create this in three steps:

a. Calling the Menubutton() constructor to make the menu button. This
needs to arguments: the parent window where this button lives, and a
text variable that holds the string that represents the menu.

b. Setting up the menu that holds the items. This takes two statements: one
call to the Menu() constructor,which needs only the name of the menu
button, and one assignment that links the Menu() constructor to the
menu button

c. A series of statements that create the individual menu items. Each of
these needs a string for its label,and a command function that will be
called when this item is selected. This command function should take no
arguments.

For our program these statements are

Talk_button=Menubutton (MB, text="Talk ")

Talk_button.menu=Menu(Talk_button)

Talk_button['menu’']=Talk_button.menu

Talk_button.grid(row = 0,column = 1)

Talk_button .menu.add_command(label="Say Hi’',command=self.hi)
Talk_button.menu.add_command(label="Say Bye',command=self.bye)

We could have as many Talk_button.menu.add_command() lines as we wish; each
adds another item to the menu.

Buttons

These are created with one call to the Button() constructor. This needs 3
arguments:

a. The parent widget that gives the window where the button lives
b. The text to be printed on the button

¢. The ”command” or callback function to be called when the user clicks on
the button. Again, this should be a function with no arguments.

In our program we create a quit-button with

QuitButton = Button(MenuBar, text="Quit”, command = self.quit)

246 CHAPTER 9. GRAPHICS AND USER INTERFACES

The callback function we use, self . quit(), is a standard method of the Frame
class. We create the button in our GUI subclass of Frame, so this method is
inherited by the subclass.

Labels

These are generally static holders of strings To make a simple label we use the
Label() constructor which needs 2 arguments:

a. The parent widget that gives the window where the label lives.
b. A text string to be printed for the label.

We could make such a label with a statement like
Label(parent, text = "This is a string")

In our case we want the text of the label to be modifiable, so we go one
step further. Instead of a static string as the text of the label we give a control
variable that can be dynamically modified by our program. There is a separate
class for each kind of control variable: IntVar, StringVar, and DoubleVar (a
floating point control variable). Each has a value instance variable to hold the
value of the control variable, and each class has set() and get() methods to
manipulate this value. Accordingly, we create this control variable with

<name> = StringVar(value = "string")

and we assign it to the label as its textvar field.

The only other items our program needs are the callback functions to be
called when the user selects the menu items. These are registered with the
program when the menu items are created. Here is a typical one; it changes the
label’s textvar value to the string " Howdy".

def hi(self):
self.outputString.set (" Howdy")

We make this a method of the GUI class, though it could just as easily be a
stand-alone function. As a method it needs self as a formal parameter; as a
stand-alone function it would have no parameters.

