
Hashing

See Chapter 20 of Weiss.



Maps in general are associative structures -- they associate 
values with keys and allow for efficient searches based on 
the keys.  TreeMaps use balanced binary search trees 
based on comparative properties of the keys.  We know 
that we can search a balanced binary search tree with n 
items in time   O( log(n) ), so these perform well.  However, 
there is a second Map implementation called a HashMap
that is sometimes preferable. 



HashMaps have two advantages over TreeMaps:

a) HashMaps to not require us to compare values of 
the keys, so we do not need comparators.

b) Under certain reasonable conditions HashMaps give 
constant-time searches.



These properties don't come without any cost.  
You lose some things with HashMaps.

TreeMaps make it easy to find the smallest key.  
In TreeMaps it isn't difficult to go from one key 
value to the next, or to get an ordered list of 
the current keys.  You don't easily get those 
things with HashMaps.  



Here is the idea of hashing.  Suppose we want to 
represent a set of numbers in the range from 0 to 
999.  One way would be to make an AVL tree with 
base type Integer that held the numbers in the 
set.  The lookup time to determine if something is 
in the set would be the logarithm of the size of the 
set.

Here is an alternative -- maintain an array A of 
1000 booleans.  Initialize the entries to false.  Add 
a number n to the set by changing A[n] to true. 
Then to determine if number n is in the set, just 
return A[n].  That is certainly constant-time 
insertion and constant-time lookup.



Here is a picture of what part of that array might 
look like for a set that contains 20, 25, and 26 but 
not 21, 23, 24, 27,  etc.

true false false false false true true false.... ....

....       20          21        22          23        24        25         26        27        .....



This is one instance of a common occurrence in 
algorithms, where time and space are 
interchangeable – it might seem inefficient in terms 
of space to use 1000 Booleans to represent a set 
that might have only a few values in it, but that gets 
us a very fast lookup.  We could save on space at the 
cost of slower lookups.  So in any specific situation 
decide whether space or time is more important to 
you.



Suppose instead of numbers we had a group of 8 
people: "Joe", "Sal", "Steven","Tony", "Sagana", 
"Uma","Ezra",and "Stella" and we wanted to 
represent a set containing some of those people.

We could arbitrarily assign indices to the names, 
such as  0 for "Joe", 1 for "Sal", 2 for "Steven",3 for 
"Tony", 4 for "Sagana",5 for "Uma",6 for "Ezra",and 7 
for "Stella" and then play the same game with a 
boolean array of size 8:



false false true false true false true

0          1          2              3        4            5           6           7 

Key:
"Joe"  0
"Sal"   1 
"Steven"  2 
"Tony"  3
"Sagana" 4
"Uma"  5
"Ezra"   6
"Stella"   7

false

Here is the array that would  describe the set 
{"Steven", "Sagana", "Ezra"}:



0              1             2               3               4              5               6             7 

Key:
"Joe"  0
"Sal"   1 
"Steven"  2 
"Tony"  3
"Sagana" 4
"Uma"  5
"Ezra"   6
"Stella"   7

Steven
22 null

Sagana
19 null

Ezra
20 nullnullnull

If we want to map people's names  to their ages, 
where name is the key and age is  the value, we could 
take this  a step further, writing the (key, value) pairs 
into the array and leaving  any unused slot null:



We need a way to assign array indices to 
objects. This is called a "hash function".   The 
array is called a HashTable and its use to 
provide dictionary-type structures (associating 
values with keys) is called a HashMap.



By the way, the "hash" part of the name comes not 
from hashish, which we know Alice B. Toklas put in 
brownies, but from hash as a mixture of foods (e.g. 
corned beef hash), since the data in a hash table is 
mixed up in what seems to be random order.



The hash function tells us where to look in the 
table or array for a value.  There is one 
complication.  In most situations the space of 
data values is vastly larger than the size of the 
table.  For example, we might want to maintain 
a set of people, and use their names as the 
keys.  



If you consider <first name, last name>  pairs such 
as "Bob Geitz" or "Carmen Ambar" there is an 
enormous number of possible names.  If the typical 
set size is 10 or so, it would be very wasteful to 
make a hash table with one entry for every possible 
name, even if we had a catalog of all possible 
names.   If we use a small table and require the 
hash function to map keys into table indices, it is 
inevitable that some keys will hash to the same 
index.  This is called a "collision". 



We need to talk about how to resolve collisions.

First,  we will look at how Java makes hash 
functions. 



Here is how Java computes the hash value of a 
string s:  Suppose s has length n, so its entries 
are s[0], s[1], ... s[n-1].

Let u[i] be the numeric unicode value of s[i] 
(65 for 'A', 97 for 'a', etc.). 

Then the hashCode for s is
u[n-1]310 +u[n-2]311 + ... + u[0]31n-1

For a long string this will overflow the size of 
an integer, which means that it might appear 
positive or negative.



For example, the integer values of the characters 
'b' and 'o' are 98 and 111 respectively.   So the 
hashCode for "bob" is

98*310+111*311+98*312 = 97717.

Indeed, if you execute the line

System.out.println( "bob".hashCode() );

it prints 97717



Similarly, the Unicode values for 'O', 'z', 'u',and'm' 
are 79, 122, 117, and 109, so Java's hashCode for
"Ozum" is

109*310+117*311+122*312+79*313 = 2474467



The Java hashCode is computed independently of 
any particular hash table.  Once you have a table 
you can compute the hash function as

int hashFunction( Object x, int tableSize ) {
int value = x.hashCode() % tableSize;
if (value < 0)

value += tableSize;
return value;

}


