
Hashing

See Chapter 20 of Weiss.

Maps in general are associative structures -- they associate
values with keys and allow for efficient searches based on
the keys. TreeMaps use balanced binary search trees
based on comparative properties of the keys. We know
that we can search a balanced binary search tree with n
items in time O(log(n)), so these perform well. However,
there is a second Map implementation called a HashMap
that is sometimes preferable.

HashMaps have two advantages over TreeMaps:

a) HashMaps to not require us to compare values of
the keys, so we do not need comparators.

b) Under certain reasonable conditions HashMaps give
constant-time searches.

These properties don't come without any cost.
You lose some things with HashMaps.

TreeMaps make it easy to find the smallest key.
In TreeMaps it isn't difficult to go from one key
value to the next, or to get an ordered list of
the current keys. You don't easily get those
things with HashMaps.

Here is the idea of hashing. Suppose we want to
represent a set of numbers in the range from 0 to
999. One way would be to make an AVL tree with
base type Integer that held the numbers in the
set. The lookup time to determine if something is
in the set would be the logarithm of the size of the
set.

Here is an alternative -- maintain an array A of
1000 booleans. Initialize the entries to false. Add
a number n to the set by changing A[n] to true.
Then to determine if number n is in the set, just
return A[n]. That is certainly constant-time
insertion and constant-time lookup.

Here is a picture of what part of that array might
look like for a set that contains 20, 25, and 26 but
not 21, 23, 24, 27, etc.

true false false false false true true false....

.... 20 21 22 23 24 25 26 27

This is one instance of a common occurrence in
algorithms, where time and space are
interchangeable – it might seem inefficient in terms
of space to use 1000 Booleans to represent a set
that might have only a few values in it, but that gets
us a very fast lookup. We could save on space at the
cost of slower lookups. So in any specific situation
decide whether space or time is more important to
you.

Suppose instead of numbers we had a group of 8
people: "Joe", "Sal", "Steven","Tony", "Sagana",
"Uma","Ezra",and "Stella" and we wanted to
represent a set containing some of those people.

We could arbitrarily assign indices to the names,
such as 0 for "Joe", 1 for "Sal", 2 for "Steven",3 for
"Tony", 4 for "Sagana",5 for "Uma",6 for "Ezra",and 7
for "Stella" and then play the same game with a
boolean array of size 8:

false false true false true false true

0 1 2 3 4 5 6 7

Key:
"Joe" 0
"Sal" 1
"Steven" 2
"Tony" 3
"Sagana" 4
"Uma" 5
"Ezra" 6
"Stella" 7

false

Here is the array that would describe the set
{"Steven", "Sagana", "Ezra"}:

0 1 2 3 4 5 6 7

Key:
"Joe" 0
"Sal" 1
"Steven" 2
"Tony" 3
"Sagana" 4
"Uma" 5
"Ezra" 6
"Stella" 7

Steven
22 null

Sagana
19 null

Ezra
20 nullnullnull

If we want to map people's names to their ages,
where name is the key and age is the value, we could
take this a step further, writing the (key, value) pairs
into the array and leaving any unused slot null:

We need a way to assign array indices to
objects. This is called a "hash function". The
array is called a HashTable and its use to
provide dictionary-type structures (associating
values with keys) is called a HashMap.

By the way, the "hash" part of the name comes not
from hashish, which we know Alice B. Toklas put in
brownies, but from hash as a mixture of foods (e.g.
corned beef hash), since the data in a hash table is
mixed up in what seems to be random order.

The hash function tells us where to look in the
table or array for a value. There is one
complication. In most situations the space of
data values is vastly larger than the size of the
table. For example, we might want to maintain
a set of people, and use their names as the
keys.

If you consider <first name, last name> pairs such
as "Bob Geitz" or "Carmen Ambar" there is an
enormous number of possible names. If the typical
set size is 10 or so, it would be very wasteful to
make a hash table with one entry for every possible
name, even if we had a catalog of all possible
names. If we use a small table and require the
hash function to map keys into table indices, it is
inevitable that some keys will hash to the same
index. This is called a "collision".

We need to talk about how to resolve collisions.

First, we will look at how Java makes hash
functions.

Here is how Java computes the hash value of a
string s: Suppose s has length n, so its entries
are s[0], s[1], ... s[n-1].

Let u[i] be the numeric unicode value of s[i]
(65 for 'A', 97 for 'a', etc.).

Then the hashCode for s is
u[n-1]310 +u[n-2]311 + ... + u[0]31n-1

For a long string this will overflow the size of
an integer, which means that it might appear
positive or negative.

For example, the integer values of the characters
'b' and 'o' are 98 and 111 respectively. So the
hashCode for "bob" is

98*310+111*311+98*312 = 97717.

Indeed, if you execute the line

System.out.println("bob".hashCode());

it prints 97717

Similarly, the Unicode values for 'O', 'z', 'u',and'm'
are 79, 122, 117, and 109, so Java's hashCode for
"Ozum" is

109*310+117*311+122*312+79*313 = 2474467

The Java hashCode is computed independently of
any particular hash table. Once you have a table
you can compute the hash function as

int hashFunction(Object x, int tableSize) {
int value = x.hashCode() % tableSize;
if (value < 0)

value += tableSize;
return value;

}

