
Graph Terminology and
Implementation

See Chapter 14 of the text.

This idea of mapping a problem to a graph and
processing the graph to solve the problem has
many applications. To consider any of these we
need some terminology and we need to look at
some ways to represent graphs.

First, a graph is a set of nodes together with a set of
edges. There are two big classes of graphs. A
directed graph has directional edges; an edge goes
from node X to node Y, and this is different from an
edge that goes from node Y to node X. The example
we started with is a directed graph:

A

B

C

E

D

F

Directed graphs are sometimes called digraphs in
honor of Diana, the late Princess of Wales.

In an undirected graph the edges are not
directional; an edge from X to Y is the same as
an edge from Y to X.

For both kinds of graphs an edge from X to Y is
often written
(X, Y); you can think of (X, Y) as being an ordered
pair for a directed graph and being a set for an
undirected graph.

In a directed graph, a cycle is a sequence of
connected nodes that repeats itself: there might be
an edge from A to B, from B to C, from C to D and
then from D back to A.

A

D

B

C

Here is a graph with a cycle:

A

B

C

E

D

F

The cycle is A -> C -> F -> A

A graph with no cycles is said to be acyclic. The class
of directed acyclic graphs, also known as DAGs, is
very important because some algorithms (e.g.,
topological sorting) only work on DAGs.

In some situations we attach numbers to the edges of a
graph. These might represent costs, or weight, or distance
according to the way we interpret the graph. For example,
we might have a graph where the nodes are cities and each
edge from one city to another has the cost of a plane ticket
for traveling between those cities:

Denver

Portland

Seattle

Chicago

400
325

495

430

525

We might represent such a weighted edge as a triple:
(Denver, Chicago, 230)

230

In either a directed or an undirected graph a path is
a sequence of nodes connected by edges. For
example, in the graph

A

B

C

E

D

F

one path from A to D is A -> C -> E -> D.
There is no path in this graph from C to A.

The length of a path is the number of edges it
contains. If the edges are weighted, the
weighted length of a path is the sum of the
edge weights.

The set of edges of a graph is often represented by
E, while the nodes (or vertices) is represented by V.
If there is one edge from each node to each other
node, the number of edges is
|E| = |V|*(|V|-1). If |E| = θ(|V|2) we say that the
graph is dense. If |E| = θ(|V|) the graph is sparse.
These definitions are not universally used; some
people use them informally in the sense that a
graph is called dense if it has a relatively large
number of edges and sparse if it has a relatively
small number of edges.

Graph Representations

There are many ways to represent directed and
undirected graphs. One simple scheme is to use
an adjacency matrix. Let n = |V| be the number
of nodes of the graph. Number the nodes 0, 1, 2,
...., n-1. Create an nxn matrix where the [i][j]
entry is 1 if there is an edge from node i to node j,
and 0 if there is no such edge.

A

B

C

E

D

F

If we let A be node [0], B node [1] and so forth,
the following graph

has adjacency matrix

0 0 1 0 1 0

1 0 1 0 1 0

0 0 0 1 1 1

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

A B C D E F

A

B

C

D

E

F

0 1 0 1 1 0

0 0 1 1 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

A B C D E F

A

B

C

D

E

F

s
o
u
r
c
e

destination

Question: What is the shortest path from A to F?

A. A -> C -> D -> F
B. A -> B -> D -> C -> F
C. A -> B -> C -> F
D. None of these answers

0 1 0 1 1 0

0 0 1 1 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

A B C D E F

A

B

C

D

E

F

s
o
u
r
c
e

destination

The correct answer is D: neither A nor B nor C

There is a path of length 2: A -> E-> F

There are many variations on this idea. If there
are edge weights, they can be stored in the
adjacency matrix rather than markers 0 and 1.
Missing edges might be represented by INFINITY.

Adjacency matrices are fine for small graphs but
unless the graph is very dense the matrix
representation is quite inefficient. There are a
million entries in the adjacency matrix for a graph
with one thousand nodes. Just initializing such a
matrix takes a long time.

An alternative that is often
more efficient is to store the
graph in an adjacency list.
We represent the graph by
an array of linked lists; each
list represents nodes which
the given node is adjacent to.
This graph might be
represented

A

B

C

E

D

F

A

B

C

D

E

F

C E

A C E

D E F

D

D

A

B

C

D

E

F

C

FA E

A B E

F

C

Question: In the following graph, what is a node
with no incoming edges?

A. A
B. B
C. C
D. D

A

B

C

D

E

F

C

FA E

A B E

F

C

Answer: A node with no incoming edges is D

Here is a structure we will use for a number of graph
algorithms, including Lab 9.

A. The graph is represented as a HashMap<String,
Vertex>. If you give this map the name of a vertex
it will give you back the structure for that vertex.

B. Vertex is a class that represents one node of the
graph. The class variables for Vertex include

String name;
List<Edge> outgoing; //list of outgoing edges

(continued next slide)

C. Edge is a class with class variables

Vertex destination;
int weight; // the weight of the edge if there are weights

Let’s think about how well this new structure will
implement the Topological Sorting algorithm. We
need to start by finding the nodes that have no
incoming edge. Give every Vertex a variable that
holds its incoming edge count; initially all of those
counts are 0. We run through all of the vertices (the
keys of the Hashmap <String, Vertex> that
represents the graph). Each vertex has an outgoing
edge count; we go to the Vertex for the outgoing
edge’s destination and increment its incoming edge
count. After processing all of vertices we walk
through the vertices again. Any edge with as its
incoming edge count has no incoming edges.

After we remove a vertex from the WorkList we
need to run through its outgoing edges. Our
implementation makes that easy since every vertex
has a list of its outgoing edges. The algorithm says
to “delete” the vertex’s outgoing edges; we do this
by going to the destination of the edge and
decrementing its incoming edge count. If this count
becomes 0 we can add the vertex to the WorkList.

So our new graph structure makes implementing
the Topological Sorting algorithm easy.

We will read a graph in from a file as a list of
weighted edges:

A B 2

means to create an edge from node A to node B
with weight 2. This may be the first mention of
either node A or node B.

When we come across a reference to a vertex
name we can find or create its structure in the
HashMap with

Vertex getVertex(String name) {
Vertex v = vertexMap.get(name);
if (v == null) {

v = new Vertex(name);
vertexMap.put(name, v);

}
return v;

}

Adding an edge such as
A B 2

to the graph is easy:

public void addEdge(String sourceName, String destName, int weight) {
Vertex source = getVertex(sourceName);
Vertex dest = getVertex(destName);
source.outgoing.add(new Edge(dest, weight));

}

