
Graph Terminology and 
Implementation

See Chapter 14 of the text.



This idea of mapping a problem to a graph and 
processing the graph to solve the problem has 
many applications.  To consider any of these we 
need some terminology and we need to look at 
some ways to represent graphs.



First, a graph is a set of nodes together with a set of 
edges.   There are two big classes of graphs.  A 
directed graph has directional edges; an edge goes 
from node X to node Y, and this is different from an 
edge that goes from node Y to node X.  The example 
we started with is a directed graph:
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Directed graphs are sometimes called digraphs in 
honor  of Diana, the late Princess of Wales.  



In an undirected graph the edges are not 
directional; an edge from X to Y is the same as 
an edge from Y to X.

For both kinds of graphs an edge from X to Y is 
often written 
(X, Y); you can think of (X, Y) as being an ordered 
pair for a directed graph and being a set for an 
undirected graph.



In a directed graph, a cycle is a sequence of 
connected nodes that repeats itself: there might be 
an edge from A to B, from B to C, from C to D and 
then from D back to A.
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Here is a graph with a cycle:
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The cycle is A -> C -> F -> A

A graph with no cycles is said to be acyclic. The class 
of directed acyclic graphs, also  known as DAGs, is 
very important because some algorithms (e.g., 
topological sorting) only work on DAGs.



In some situations we attach numbers to the edges of a 
graph.  These might represent costs, or weight, or distance 
according to the way we interpret the graph.  For example, 
we might have a graph where the nodes are cities and each 
edge from one city to another has the cost of a plane ticket 
for traveling between those cities:
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We might represent such a weighted edge as a triple: 
(Denver, Chicago, 230)
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In either a directed or an undirected graph a path is 
a sequence of nodes connected by edges.  For 
example, in the graph
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one path from A to D  is A -> C -> E -> D.
There is no path in this graph from C to A.



The length of a path is the number of edges it 
contains.  If the edges are weighted, the 
weighted length of a path is the sum of the 
edge weights.  



The set of edges of a graph is often represented by 
E, while the nodes (or vertices) is represented by V.  
If there is one edge from each node to each other 
node, the number of edges is 
|E| = |V|*(|V|-1).   If  |E| = θ(|V|2) we say that the 
graph is dense.  If |E| = θ(|V|) the graph is sparse.  
These definitions are not universally used; some 
people use them informally in the sense that a 
graph is called dense if it has a relatively large 
number of edges and sparse if it has a relatively 
small number of edges. 



Graph Representations

There are many ways to represent directed and 
undirected graphs.  One simple scheme is to use 
an adjacency matrix.  Let   n = |V| be the number 
of nodes of the graph.  Number the nodes 0, 1, 2, 
...., n-1.  Create an nxn matrix where the [i][j] 
entry is 1 if there is an edge from node i to node j, 
and 0 if there is no such edge.  
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If we let A be node [0], B node [1] and so forth, 
the following graph

has adjacency matrix
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Question:  What is the shortest path from A to F?

A. A -> C -> D -> F
B. A -> B -> D -> C -> F
C. A -> B -> C -> F
D. None of these answers
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The correct answer is D: neither A nor B nor C

There is a path of length 2: A -> E-> F



There are many variations on this idea.  If there 
are edge weights, they can be stored in the 
adjacency matrix rather than markers 0 and 1.  
Missing edges might be represented by INFINITY.  

Adjacency matrices are fine for small graphs but 
unless the graph is very dense the matrix 
representation is quite inefficient.  There are a 
million entries in the adjacency matrix for a graph 
with one thousand nodes.    Just initializing such a 
matrix takes a long time. 



An alternative that is often 
more efficient is to store the 
graph in an adjacency list.  
We represent the graph by 
an array of linked lists; each 
list represents nodes which 
the given node is adjacent to. 
This graph might be 
represented
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Question: In the following graph, what is a node 
with no incoming edges?

A. A
B. B
C. C
D. D
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Answer: A node with no incoming edges is D



Here is a structure we will use for a number of graph 
algorithms, including Lab 9.  

A. The graph is represented as a  HashMap<String, 
Vertex>.   If you give this map the name of a vertex 
it will give you back the structure for that vertex.

B. Vertex is a class that represents one node of the 
graph.  The class variables for Vertex include

String name;
List<Edge> outgoing; //list of outgoing edges

(continued next slide)



C. Edge is a class with class variables

Vertex destination; 
int weight; // the weight of the edge if there are weights



Let’s think about how well this new structure will 
implement the Topological Sorting algorithm.  We 
need to start  by finding the nodes that have no 
incoming edge.  Give every Vertex a variable that 
holds its incoming edge count; initially all of those 
counts are 0.  We run through all of the vertices (the 
keys of the Hashmap <String, Vertex> that 
represents the graph).  Each vertex has an outgoing 
edge count; we go to the Vertex for the outgoing 
edge’s destination and increment its incoming edge 
count.  After processing all of vertices we walk 
through the vertices again. Any edge with as its 
incoming edge count has no incoming edges.                



After we remove a vertex from the WorkList we 
need to run through its outgoing edges.  Our 
implementation makes that easy since every vertex 
has a list of its outgoing edges.  The algorithm says 
to “delete” the vertex’s outgoing edges; we do this 
by going to the destination of the edge and 
decrementing its incoming edge count.  If this count 
becomes 0 we can add the vertex to the WorkList.

So our new graph structure makes implementing 
the Topological Sorting algorithm easy.  



We will read a graph in from a file as a list of 
weighted edges:

A B 2

means to create an edge from node A to node B 
with weight 2. This may be the first mention of 
either node A or node B. 



When we come across a reference to a vertex 
name we can find or create its structure in the 
HashMap with

Vertex getVertex( String name) {
Vertex v = vertexMap.get(name);
if (v == null) {

v = new Vertex(name);
vertexMap.put(name, v);

}
return v;

}



Adding an edge such as 
A  B  2

to the graph is easy:

public void addEdge(String sourceName, String destName, int weight) {
Vertex source = getVertex(sourceName);
Vertex dest = getVertex(destName);
source.outgoing.add(new Edge(dest, weight) );

}


