
Graphs

See Chapter 14 of the text.

So far this semester we have talked about many
specific data structures -- lists, queues, stacks,
binary trees, heaps, etc.

We will now look at graphs, which are much
more general.

Many, many problems can be solved by creating
a graph that represents the problem, processing
the graph, and thereby creating a solution for
the problem.

For example, suppose we are writing a scheduler
for a collection of processes. Some processes get
input from others. If process B gets input from A,
we need to schedule A before we schedule B. Our
task is to find an ordering of the processes so that
we complete each before its output is needed by
any other process.

Here is a way to solve this problem:

First, make a graph where each process is
represented by a node of the graph. Add an edge
in the graph from node X to node Y if X needs to
be processed before Y.

Our graph might look like this:

A

B

C

E

D

F

Question: Let's see if you understand the setup.
We want to process X before Y if there is an edge
from X to Y. Here is a graph:

A

B

C

E

D

F

Which is a correct ordering?
A. B E D A C F
B. A B C D E F
C. B A C E F D
D. B A E C F D

A

B

C

E

D

F

Answer C: B A C E F D is one correct ordering.

Another correct ordering is B A C F E D.

B C E F A D is NOT a correct ordering, since there is
an edge from A to E but A comes after E in the
ordering.

A

B

C

E

D

F

To process this graph we will make a set of nodes
we call our "WorkingSet". Initially our
WorkingSet consists of all nodes that have no
incoming edges.

For the graph above WorkingSet = {B}

Here is the algorithm we use to process the
graph. On each step:

a) Remove any one node from the
WorkingSet. Call this node X.

b) Remove every edge from node X to any
other node Y. If node Y has no other
incoming edges, add node Y to the
WorkingSet.

c) Add node X to the output.
Continue these steps until the WorkingSet is
empty.

A

B

C

E

D

F

We start with this graph:

WorkingSet = {B}

Output = []

On the first step we remove B from the
WorkingSet, add it to the output, and we
remove the edges from B to A, E, and C

A

B

C

E

D

F

WorkingSet = {}

Output = [B]

We removed the only incoming edge for node A,
so we add it to the WorkingSet:

WorkingSet = {A}
Output = [B]

For the next step we remove A from the WorkingSet,
add it to the output, and remove its outgoing edges

AB

C

E

D

F

WorkingSet = {}
Output = [B, A]

C now has no incoming edges, so we add it to the
WorkingSet:

WorkingSet = {C}
Output = [B, A]

On the next step we remove C and its edges; this
leaves E and F with no incoming edges

AB C

E

D

F

WorkingSet = {E, F}

Output = [B, A, C]

On the next three steps the algorithm outputs E
and F in either order, then D.

Our ordering is thus either [B, A, C, E, F, D] or [B,
A,C, F, E, D]. If you compare these to the original
graph you can see that no node appears in either
list before any of its dependencies.

A

B

C

E

D

F

C

A

B

Question: Does our algorithm work for this graph?

A. Yes
B. No

C

A

B

Answer: No; there is no node with no incoming
edges, so our initial Working Set is empty..

C

E

D

F

Does our algorithm work for this graph?

A. Yes
B. No

A

B

C

E

D

F

A

B

No matter what order we list them, nodes C, E, D,
and F always have incoming edges.

When does our algorithm not work?

A. It never works

B. If the graph has too many nodes?

C. If the graph has a cycle -- a sequence of
edges from node to node that eventually gets
back to its starting point.

D. If the problem has no solution

Answer:
The algorithm does not work if graph has a cycle:
a chain of nodes with the first pointing to the
second, the second to the third, and so forth, with
the last node pointing back to the first.

The algorithm does work on any graph that does
not have a cycle.

By the way, the process of enumerating in an order
that is consistent with the edges of the graph is
called a topological sort of the graph. The
algorithm we have been discussing gives a
toplogical sort of any graph that does not contain a
cycle.

This idea of mapping a problem to a graph and
processing the graph to solve the problem has
many applications. To consider any of these we
need some terminology and we need to look at
some ways to represent graphs.

