Sorting Algorithms
The 3 sorting methods discussed here all have wild signatures. For example,

```java
public static <E extends Comparable<? super E>> void BubbleSort(E[] array)
```

The underlined portion is a *type bound*. This says that the generic type `E` used as the base type of the array must implement or extend a superclass that implements, the `Comparable` interface (which says that `E` has a `compareTo(E)` method. See the discussion in Weiss of wildcards and type bounds, p. 151-154.

In less generic examples you probably don't need this. If you are writing `BubbleSort` to sort strings its signature could just be

```java
public static void BubbleSort(String[] array)
```
BubbleSort makes repeated passes through the array, interchanging successive elements that are out of order. When no changes are made in a pass the array is sorted.
public static <E extends Comparable<? super E>>void BubbleSort(E[] array)
{
 boolean sorted = false;
 int highest = array.length - 1;
 while (!sorted) {
 sorted = true;
 for (int i = 0; i < highest; i++) {
 if (array[i].compareTo(array[i+1]) > 0) {
 E buffer = array[i];
 array[i] = array[i+1];
 array[i+1] = buffer;
 sorted = false;
 }
 }
 highest -= 1;
 }
}
Original data

<table>
<thead>
<tr>
<th>33</th>
<th>12</th>
<th>45</th>
<th>17</th>
<th>23</th>
<th>52</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>33</td>
<td>17</td>
<td>23</td>
<td>45</td>
<td>24</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>23</td>
<td>33</td>
<td>24</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>23</td>
<td>24</td>
<td>33</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>23</td>
<td>24</td>
<td>33</td>
<td>45</td>
<td>52</td>
</tr>
</tbody>
</table>

Each row shows the result of a pass through the previous row, flipping consecutive elements that are out of order.
The first pass through the list does \((n-1)\) comparisons. That pass puts the largest element into its proper location at the last spot in the list, so the next pass does \((n-2)\) comparisons. Altogether we do at most
\[
(n-1)+(n-2)+...+1 = \frac{n(n-1)}{2}
\]
comparisons. For each comparison we do at most 1 interchange, which takes 3 assignment statements. This means BubbleSort is worst-case \(O(n^2)\).
Note that the best case for BubbleSort is when the data is already sorted; only one pass is then needed and the running time is $O(n)$. Of course, if you knew the data was already sorted there wouldn't be a lot of point in calling BubbleSort …
SelectionSort

SelectionSort finds the smallest element and puts it at position 0, the smallest remaining element and puts it at position 1, etc.
public static <E extends Comparable<? super E>> void SelectionSort(E[] array) {
 for (int i = 0; i < array.length - 1; i++) {
 // find the index of the smallest remaining element
 int small = i;
 for (int j = i + 1; j < array.length; j++) {
 if (array[j].compareTo(array[small]) < 0)
 small = j;
 }
 // put the smallest remaining element at position i
 E buffer = array[i];
 array[i] = array[small];
 array[small] = buffer;
 }
}
Original data

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>12</td>
<td>45</td>
<td>17</td>
<td>23</td>
<td>52</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>33</td>
<td>45</td>
<td>17</td>
<td>23</td>
<td>52</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>45</td>
<td>33</td>
<td>23</td>
<td>52</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>23</td>
<td>33</td>
<td>45</td>
<td>52</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>23</td>
<td>24</td>
<td>45</td>
<td>52</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>23</td>
<td>24</td>
<td>33</td>
<td>52</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>23</td>
<td>24</td>
<td>33</td>
<td>45</td>
<td>52</td>
</tr>
</tbody>
</table>

The element put in its final location is in blue.
Selection sort does \((n-1)\) passes. The first one does \((n-1)\) comparisons; the second \((n-2)\) comparisons, and so forth. There are a total of

\[(n-1) + (n-2) + (n-3) + \ldots + 1 = n(n-1)/2\]

comparisons. This is very similar to BubbleSort, only instead of interchanging elements of the array, which takes 3 assignments, here each comparison results in at most one integer assignment. Both are worst-case \(O(n^2)\), but in specific examples SelectionSort usually runs somewhat faster.
Question: Suppose you use SelectionSort on an array of size n that is already sorted. How many comparisons will the sorting algorithm do?

A. None
B. 1
C. O(n)
D. O(n^2)
Answer D: $O(n^2)$.

Unlike BubbleSort, SelectionSort doesn't have a quick way out if the data is already sorted; it always does $n*(n-1)/2$ comparisons.
InsertionSort

InsertionSort maintains a sorted portion of the array (the front) and inserts elements from the unsorted portion into it.
public static <E extends Comparable<? super E>>void
 InsertionSort(E[] array) {
 for (int p = 1; p < array.length; p++) {
 // p is the start of the unsorted portion
 E item = array[p];
 int j;
 for (j=p; j > 0 && item.compareTo(array[j-1]) < 0; j--)
 array[j] = array[j-1];
 array[j] = item;
 }
 }
The sorted portion of the array is in blue.

<table>
<thead>
<tr>
<th>Original data</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 12 45 17 23 52 24</td>
</tr>
<tr>
<td>12 33 45 17 23 52 24</td>
</tr>
<tr>
<td>12 33 45 17 23 52 24</td>
</tr>
<tr>
<td>12 17 33 45 23 52 24</td>
</tr>
<tr>
<td>12 17 23 33 45 52 24</td>
</tr>
<tr>
<td>12 17 23 33 45 52 24</td>
</tr>
<tr>
<td>12 17 23 24 33 45 52</td>
</tr>
</tbody>
</table>
It is easy to see that InsertionSort is no worse than $O(n^2)$ -- the outer loop runs n times, and the inner loop also takes at most n steps -- n steps done n times gives a total of n^2 steps. The worst case is when the data is reverse-sorted (biggest to smallest); the first pass does 1 comparison, the second 2, and so forth. Altogether this does $1+2+3+...+(n-1) = \frac{n(n-1)}{2}$ comparisons.
Question: Suppose you use InsertionSort on an array of size n that is already sorted. How many comparisons will the sorting algorithm do?

A. None
B. 1
C. \(O(n)\)
D. \(O(n^2)\)
Answer C: $O(n)$

If the data is already sorted, each pass does only one comparison and one assignment statement, so the algorithm runs in $O(n)$ steps.
InsertionSort is a good choice if you have a small amount of data to sort; it tends to be faster than the other simple sorts and is easy to implement.

If you want to sort data the size of the NY phone book, InsertionSort is a terrible choice. There are sorting algorithms that are O(n*log(n)), which is vastly better than O(n^2) when n is large.