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Notes on x86-64 Assembly Language 

 

Our compilers will translate BPL code into Intel x86 assembly code.  Our lab machines all use 

64-bit implementations of Linux, so we will use the 64-bit variant of x86 code, which some 

denote by x86-64, or even by x64.  To some extent the 64-bit systems are backwards-compatible 

with 32-bit, but the same is not true of the assembly language.  There are many, many books on 

32-bit x86 architecture, but if you type one of their programs into our systems it will not 

assemble. Even the register names have changed in x64.  The 64-bit world is more complicated.  

In x86-32, integers, floats and addresses were all 32 bits; the same assembly instructions worked 

for almost any data you would use.  In the 64-bit world addresses are 64 bits and integers are 32 

bits; even a simple move instruction has different versions for moving addresses and moving 

numbers.   None of this is particularly difficult but you need to keep your head on straight when 

you are generating 64-bit assembly code.  Fortunately, in this course we will deal with a very 

small subset of the whole assembly language – just a few addressing modes and about a dozen 

different instructions. 

Once upon a time, before you were born, each chip had a dedicated assembly language that 

directly controlled the operation of the chip. Those days are long over.  Assemblers now translate 

assembly code into microcode that controls the chip. Anything that can be easily translated to 

microcode can serve as an ‘assembly language’.  There are actually several different assemblers 

for the Intel chips – MASM is the Microsoft assembler, NASM is the popular “Netwide 

Assember”, GAS is the Gnu assembler, and there are a number of others.  Unfortunately, these 

don’t all use the same syntax.  GAS, which we will use, uses an old AT&T syntax that puts the 

source before the destination in an instruction: 

 movq %rsp, %rax 

moves data from register RSP to register RAX.  MASM and NASM use an Intel syntax that 

reverses this: to move data from RSP to RAX you would write something like 

 movq rax, rsp 

(Intel syntax also eliminates the % as a register designator).  This is another reason to be careful 

using assembly code from another source; you need to be sure which is the source and which is 

the destination in each instruction. 
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Note that our GAS assembler is case-insensitive.  You can write an instruction as 

 MOVL $3, %EAX 

or as 

 movl $3m %eax 

Registers:  There are 16 64-bit registers in our systems.  Most of these are general purpose 

registers, though some have recommended uses.  One caution is that we will tie into the C-library 

procedures for our I/O, and these make some assumptions about what is in various registers.  The 

Intel standard recommends that specific registers be used for the first six arguments in function 

calls (a call that needs more than 6 arguments pushes the remainder on the stack).  Except when 

we call C-routines we will ignore this; all of our internal function calls will work by pushing 

arguments onto the stack.  This means that we have a lot of registers to play with.   

Most of the 64-bit registers have names for their first 32-bit portions, for backwards 

compatibility with x86-32 systems.  The 32-bit portions have names starting with ‘e’ – esp, eax, 

etc. The 64-bit versions have the same names, with the ‘e’ replaced by ‘r’: rsp, rax, and so forth.  

You need to connect the register with the type of data you are using.  For example, if you want to 

move the integer 45 into register rax, you may either use 

 movl $45, %eax 

or 

 movq $45, %rax 

These do exactly the same thing, but you need to tie the opcode suffix to the size of the register 

you are using. 

Note that in GAS,which we will use as our assembler, registers are denoted with a ‘%’ character 

-- %rax, %rsp, etc.  When you refer to those same registers in GDB you need to change the ‘%’ 

to a ‘$’.  Just to keep you on your toes.... 

Here is a list of the registers in the x86-64 architecture 

 



3 

 

 

The “e” names for the lower 32-bits of 8 of these registers are the names of the x86-32 registers.  

Registers r8 through r15 were added in the x86-64 architecture, so their lower halves follow a 

different naming convention.  There are other special purpose registers that you should not need 

to access.  %rip is the instruction pointer, or address of the next instruction to be executed.  

%rflags is the machine status word 

Addressing Modes: The GAS assembler uses an AT&T format in which instructions are 

written 

 opcode  S, D 

where S is the “source” and D is the “destination” for the instruction.  A few instructions take 

only one or no operands; there are no 3-operand instructions.  The operands themselves have a 

variety of possible formats.  We will use only the following: 

Register Lower 

half 

Purpose 

%rax %eax This is general purpose, but many people treat it as an “accumulator”, 

where the results of calculations go.  The Intel programming 

conventions call for return values to be placed in rax before returning. 

%rsp %esp, 

which you 

should 

never use 

This is the stack pointer.  It points to the top element currently on the 

stack.  The stack grows towards smaller addresses, so a push operation 

decrements rsp.  You can allocate local variables by decrementing rsp 

yourself, and pop the stack by incrementing rsp. 

%rdi %edi This is general purpose.  The Intel conventions call for the first 

argument for a function call to be passed in rdi.  We will do this only 

when calling C routines, but you should be careful about trashing this 

register. 

%rsi %esi The conventions call for the second argument to be passed in rsi. 

%rdx %edx The third argument. 

%rcx %ecx The fourth argument. 

%r8 %r8d The fifth argument. 

%r9 %r9d The sixth argument 

%r12 %r12d This is undesignated, and not used by the C-compiler. 

%rbx %ebx These registers are designated “callee saved” in the conventions.  This 

means that if you are using them you should save their prior values, and 

restore those values when you are done with them. 
%rbp %ebp 

%r10 %r10d 

%r13 %r13d 

%r14 %r14d 

%r15 %r15d 

%r11 %r11d This is used for linking.  I would avoid using it. 



4 

 

Register mode:  The operand is the contents of the specified register. For example,  

 movq %rsp, %rax 

uses register mode for both the source and destination operands.  The effect of this instruction is 

to move the contents of register rsp to register rax. 

Indirect mode: This gives a register and an offset in the format offset(%register).  The operand 

is the contents of the memory location given by adding the offset to the register value.  For 

example, 

 movl %eax, 8(%rsp)  

moves the 32 bits of register eax to the stack location given by 8-bytes below the current top of 

the stack. 

Immediate mode:  This specifies a number as the actual operand.  The number needs to be 

preceeded by a ‘$’: 

 movl $23, %eax 

puts the value 23 into the 32-bit register eax.  You can do this with labels as well.  For example, 

to call the  C-routine printf we will use an instruction 

 movq  $S1, %rdi 

where S1 is a label on the memory location that contains the desired formatting string.  This puts 

the address of S1 into register rdi.  When used with labels rather than numbers I call this 

“absolute mode”.   

Direct mode:  I am not sure this is a standard name.  If you have a label on a memory location 

where data is stored and you want to do something with the contents of that memory you can use 

the label without a ‘$’ prefix: 

 movl X, %eax 

moves the 32 bits at label X into register eax. 

 

Instructions: We will use a surprisingly small subset of the full x86 instruction set.  Most 

instructions have a variety of possible suffixes, the ‘l’ suffix indicates 32-bit data, while the ‘q’ 

suffix indicates 64 bits.  We will use only 3 categories of instructions – those that move data 

around, those that  affect the control flow, and those that do arithmetic 
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Data Instructions: 

Move  moves the source data into the destination 

movl S, D moves 32 bits; so the source needs to be 32 bits and the destination 

needs to be either a memory location or a 32-bit register. 

movq S, D moves 64 bits 

Load Effective Address  puts the address of the source into the destination     

leaq 8(%rsp) , %rax  puts the address of the first word below the top of the stack 

into rax.  You could achieve the same effect in two instructions by putting the 

stack pointer into rax and adding 8, so you never really need to use this. 

Clear loads 0 into the destination 

clrl D puts 0 into the 32-bit destination 

clrq D puts 0 into the 64-bit destination. 

Push  pushes the source operand onto the stack 

push S decrements rsp by 8 bytes and puts the contents of S at this location on the 

stack.  rsp always points at the top value on the stack. 

Pop puts the top of the stack into the destination and increments rsp by 8 bytes. 

pop %rax  pops the stack into rax.  If you just want to get things off the stack and 

not put them somewhere, you can achieve this by adding the appropriate value to 

rsp. 

Control Flow Instructions: 

Jump This puts the destination into the instruction pointer rip; the destination is almost 

always as label, as in 

jmp L1  

Compare  compares the destination and source operands.  It is usually followed by one 

of the conditional jumps.  We will only use it to compare integers, so this form is 

cmpl S, D 
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 Conditional jumps:  je, jne, jl, jle, jg, jge, jz   These all take a destination, usually a 

label, as their only operand.  The condition is the result of the previous instruction, which 

is usually cmpl.  Unfortunately, the AT&T syntax GAS uses conflicts with the instruction 

names.  The instructions 

  cmpl $8, %eax 

 jle  L2 

 

result in control jumping to label L2 if  eax <= 8; most people reading the instruction 

would expect the reverse.  The reason for this dissonance is that that AT&T syntax 

reverses the order of the operands; the same statements written in Intel syntax would 

branch of 8 <= rax.  You need to remember this when you implement the comparison 

operators.  Note that the jz instruction jumps if the result of the previous instruction was 

zero – it doesn’t require a cmpl instruction.   

Call pushes rip (the address of the next instruction, also known as the return address) 

onto the stack and jumps to the start of the function being called, which is almost 

always marked with a label.  For example 

 call F   pushes the address of the next instruction onto the stack and jumps to label F.  

Note that the instruction itself does nothing with arguments and nothing with local 

variables.  Note also that function F should assume when it starts that the proper 

return address is at the top of the stack.  Anything F pushes onto the stack needs to be 

popped back off before it executes a return instruction.  

Return pops the stack into the instruction pointer rip.  That is all it does.  A frequent 

cause of your compiled code crashing is not handling the stack properly, so when a return 

statement is executed there is something other than the return address at the top of the 

stack.  Some malware tries to get control of a machine by pushing the address of a 

malicious function onto the stack just before a return.  The return instruction has no 

operands; it is just 

 ret  

Arithmetic Instructions:  You would think these would be simple. 

Addition, Subtraction.  In these the source operand is added or subtracted to the 

destination.  Use the ‘l’ suffix for integer arithmetic, the ‘q’ suffix for addresses. 

  addl $8, %eax   Add 8 to the integer in eax 

 addq $8, %rsp   Add 8 to the stack pointer, effectively popping the stack 



7 

 

Multiplication.  The MUL instruction produces 64-bit output and doesn’t work the way 

you would (or at least the way I would) expect.  imul is32-bit integer multiplication 

operator.  For example 

  imul  0(%rsp) , %eax   multiplies the value at the top of the stack times the 

value in register eax, and leaves the result in eax. 

Division.  This is more complex.  The basic division operation is set up to divide 128 

bits, stored in two registers, by  64 bits stored in one.  If the dividend is negative we 

need to “sign-extend” it to fill up the rest of its 128 bits with copies of the sign bit 

(0’s for positive dividends, 1’s for negative dividends).  Here is a sequence of steps 

that makes it work: 

a) Put the divisor into ebp. 

b) Put the dividend (the number being divided into) into eax.   

c) Do a cltq instruction (with no operands) to sign-extend it to all of rax.  cltq 

stands for “convert long to quad” – a “longword”is 32 bits, a quadword” is 64. 

d) Do a cqto instruction (with no operands) to sign-extend it to rdx.  cqto stands 

for “convert quadword to octword.”   

e) Do a idivl instruction, whose only argument is the divisor ebp.  The quotient is 

put into eax, and the remainder (for a mod or % operation) is put into edx.  

For example, 

movl $7, %ebp 

movl $23, %eax 

clt q 

cqt o 

idivl %ebp 

 

the result leaves the quotient, 3 in eax and the remainder, 2 in edx 

 

Assembler Directives: There are a few directives that tell the assembler how to deal with the 

text of an assembly language program.  Here are ones we will use, in the order in which you will 

probably use them: 

.comm  Symbol bytes, alignment  as in   .comm X, 40, 32   This allocates a named chunk of 

read/write memory using the given number of bytes.  We use t his for global variables and 

arrays.   
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.sect ion .rodata  The directives that come after this are put in a “readonly” section, where C 

expects to find string constants.  You will at least need to define strings here for working with 

the scanf and printf routines.  To define a string, use 

 Symbol: .string  <literal string in double quotes > 

For example, you might have at the top of your code the directives 

.sect ion .rodat a 

.LC0: .st ring " %d "  

.LC1: .st ring " >>> "  

 

.text  This marks the start of the executable assembler code.  

.globl Symbol   This indicates to the linker that the given symbol has global scope in the 

program.  We link to a C run-time environment that expects a top-level function called main( ).  

BPL also requires a function called main.  To indicate that this function is the global main( ) 

expected by the run-time environment use the directive 

 .globl main 

You can give this at the start of the .text section; the globl directive does not need to be at the 

point where the main function is defined. 
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Example: The following program is an assembly language version of 

 int f(int x) { 

  return 2*x; 

 } 

 

 void main(  void ) { 

  int i; 

  i = 0; 

  while (i < 10 ) { 

   write( i ); 

   write( f(i) ); 

   writeln( ); 

   i = i + 1; 

  } 

 } 

  

This is hand-generated code, not code generated by my BPL compiler (which is much less efficient).  You 

should be able to follow the code instruction by instruction. Note that this uses %rsp as the stack pointer 

and %rbx as the frame pointer. The following diagrams show the stack during the calls to main( ) and f( ): 
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.sect ion   .rodat a 

.Writ eInt St ring: .st ring " %d "   

.Writ elnSt ring: .st ring " \ n"   

.t ext  

.globl main 

 

f : 

  movq %rsp, %rbx          #  set  up t he f rame point er 

  movq 16(%rbx), %rax      #  argument  value 

  imul $2, %eax           #  performing mult iplicat ion 

  ret                        #  ret urn f rom t he funct ion 

main: 

  movq %rsp, %rbx          #  set  up t he f rame point er 

  sub $8, %rsp             #  allocat e local variable i 

  movl $0, %eax            #  put t ing value int o ac 

  movl %eax, -8(%rbx)  # assign t o i 

.L0: 

  cmpl $10, -8(%rbx)        #  compare i and 10 

  jge .L1                   #  if  i >= 10 leave t he loop 

  movl -8(%rbx), %esi      #  value t o print   (arg2 for t he call)  

  movq $.Writ eInt St ring, %rdi     

  movl $0, %eax            #  clear t he ret urn value 

  call print f                #  call t he C-lib print f  funct ion 

  push -8(%rbx)             #  pushing argument  for t he call t o f  

  push %rbx                #  pushing t he f rame point er 

  call f                     #  calling t he funct ion 

  pop %rbx                 #  ret rieving t he f rame point er 

  add $8, %rsp             #  removing args f rom t he st ack 

  movl %eax, %esi          #  value t o print  (arg2 for t he call)  

  movq $.Writ eInt St ring, %rdi             

  movl $0, %eax            #  clear t he ret urn value 

  call print f                #  call t he C-lib print f  funct ion 

  movq $.Writ elnSt ring, %rdi             

  movl $0, %eax            #  clear t he ret urn value 

  call print f                #  call t he C-lib print f  funct ion 

  movl -8(%rbx), %eax      #  value of  i 

  addl $1, %eax            #  performing addit ion 

  movl %eax, -8(%rbx)      #  assign 

  jmp .L0                   #  WHILE: jump back t o t op 

.L1: 

   add $8, %rsp            #  deallocat e local variables 

   ret                       #  ret urn f rom t he funct ion 


