Recursive Algorithms

Introduction

Lecture 11
by Marina Barsky

https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/recursion
Algorithms can call other algorithms

Algorithm h (integer x)
 return $x - 5$

Algorithm g (integer x)
 $y = h(x - 10)$
 return $2y$

Algorithm f (integer x)
 $y = g(3x)$
 return $y + 1$

$z = f(5)$
print (z)

• What is printed?
A. 10
B. 1
C. 4
D. 0
E. None of the above
Stacking code frames

Algorithm h (integer x)
 return $x - 5$

Algorithm g (integer x)
 $y = h(x - 10)$
 return $2 \times y$

Algorithm f (integer x)
 $y = g(3 \times x)$
 return $y + 1$

$z = f(5)$
Stacking code frames

Algorithm h(integer x)
 return x - 5

Algorithm g(integer x)
 y = h(x - 10)
 return 2*y

Dashboard

Algorithm f(integer x)
 y = g(3*x)
 return y + 1

Stack frames

z = f(5)
Stacking code frames

Algorithm $h(\text{integer } x)$
\[
\text{return } x - 5
\]

Algorithm $g(\text{integer } x)$
\[
y = h(x - 10) \\
\text{return } 2\times y
\]

Algorithm $f(\text{integer } x)$
\[
\rightarrow y = g(3\times x) \\
\text{return } y + 1
\]

$z = f(5)$
Stacking code frames

Algorithm \(h(\text{integer } x) \)
\[
\text{return } x - 5
\]

Algorithm \(g(\text{integer } x) \)
\[
y = h(x - 10) \\
\text{return } 2y
\]

Algorithm \(f(\text{integer } x) \)
\[
y = g(3x) \\
\text{return } y + 1
\]

\[z = f(5)\]
Stacking code frames

Algorithm h (integer x)
return $x - 5$

Algorithm g (integer x)
$y = h(x - 10)$
return $2y$

Algorithm f (integer x)
y = $g(3x)$
return $y + 1$

$z = f(5)$
Stacking code frames

Algorithm \(h(\text{integer } x) \)
\[
\text{return } x - 5
\]

Algorithm \(g(\text{integer } x) \)
\[
y = h(x - 10) \\
\text{return } 2 \times y
\]

Algorithm \(f(\text{integer } x) \)
\[
y = g(3 \times x) \\
\text{return } y + 1
\]

\[z = f(5) \]
Stacking code frames

Algorithm \(h(\text{integer } x) \)
\[
\begin{align*}
\text{return } & x - 5 \\
\end{align*}
\]

Algorithm \(g(\text{integer } x) \)
\[
\begin{align*}
y &= h(x - 10) \\
\text{return } & 2 \times y \\
\end{align*}
\]

Algorithm \(f(\text{integer } x) \)
\[
\begin{align*}
y &= g(3 \times x) \\
\text{return } & y + 1 \\
\end{align*}
\]

\[z = f(5) \]
Stacking code frames

Algorithm \(h(\text{integer } x) \)
\[
\text{return } x - 5
\]

Algorithm \(g(\text{integer } x) \)
\[
\text{y = } h(x - 10) \\
\text{return } 2 \times y
\]

Algorithm \(f(\text{integer } x) \)
\[
\text{y = } g(3 \times x) \\
\text{return } y + 1
\]

\(z = f(5) \)
Stacking code frames

Algorithm \(h(\text{integer } x) \)
\[
\text{return } x - 5
\]

Algorithm \(g(\text{integer } x) \)
\[
y = h(x - 10) \\
\text{return } 2 \times y
\]

Algorithm \(f(\text{integer } x) \)
\[
y = g(3 \times x) \\
\text{return } y + 1
\]

\(z = f(5) \)
Stacking code frames

Algorithm \(h(\text{integer } x) \)
\[
\text{return } x - 5
\]

Algorithm \(g(\text{integer } x) \)
\[
y = h(x - 10) \\
\text{return } 2y
\]

Algorithm \(f(\text{integer } x) \)
\[
y = g(3x) \\
\text{return } y + 1
\]

\[
z = f(5)
\]
Stacking code frames

Algorithm \(h(\text{integer } x) \)
\[
\begin{align*}
\text{return } x - 5
\end{align*}
\]

Algorithm \(g(\text{integer } x) \)
\[
\begin{align*}
y &= h(x - 10) \\
\text{return } 2y
\end{align*}
\]

Algorithm \(f(\text{integer } x) \)
\[
\begin{align*}
y &= g(3x) \\
\text{return } y + 1
\end{align*}
\]

\(z = f(5) \)
Stacking code frames

Algorithm $h(\text{integer } x)$
 return $x - 5$

Algorithm $g(\text{integer } x)$
 $y = h(x - 10)$
 return $2 \times y$

Algorithm $f(\text{integer } x)$
 $y = g(3 \times x)$
 return $y + 1$

$z = f(5)$
Stacking code frames

Algorithm \(h(\text{integer } x) \)
\[
\text{return } x - 5
\]

Algorithm \(g(\text{integer } x) \)
\[
y = h(x - 10) \\
\text{return } 2*y
\]

Algorithm \(f(\text{integer } x) \)
\[
y = g(3*x) \\
\text{return } y + 1
\]

\(z = f(5) \)
An algorithm can call the **same** algorithm

• What will happen if we place call to algorithm $f()$ inside algorithm $f()$?

 Algorithm f(integer x)

 $y = f(3*x)$

 return $y + 1$

• The stack frames will pile up until memory permits and then the program will crash (**stack overflow**)!
Recursive algorithms

• We can use algorithms which call the same algorithm inside them if the big problem can be broken into smaller subproblems, which require the same logic to compute.

• Such problems are called recursive problems, and the algorithm which contains a call to itself is called a recursive algorithm.
Example of recursive problem: factorial

5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1

5! = 5 \cdot (4!)

4! = 4 \cdot (3!)

eetc...

Recurrence relation

F(n) = n \cdot F(n-1) \text{ for } n > 1

F(1) = 1
Definition of *factorial*

\[F(n) = n \times F(n-1) \text{ for } n > 0 \]

\[F(1) = 1 \]

Algorithm *factorial*(n)

```
if n <= 1:
    return 1
return n * factorial(n-1)
```
Behind the curtain: *factorial*

Algorithm `fac (n)`:

```python
if n <= 1:
    return 1
return n * fac (n-1)
```

\[a = \text{fac}(4) \]

Loaded definition of `fac` to compute `fac(4)`, but cannot compute, needs to compute `fac(3)` first.
Behind the curtain: *factorial*

Algorithm `fac (n)`:
`if` `n <= 1:`
` return 1`
`return n * fac (n-1)`

`a = fac (4)`

The Stack

- `return 3 * fac(2)`
- `return 4 * fac(3)`
- `a = fac(4)`

Loaded a different copy of `fac`, to compute `fac(3)`
```
Algorithm fac (n):
    if n <= 1:
        return 1
    return n * fac (n-1)

a = fac (4)
```

Finally can compute fac(1)

"The Stack"

- fac(4)
 - return 1
- fac(3)
 - return 2*fac(1)
- fac(2)
 - return 3*fac(2)
- fac(1)
 - return 4*fac(3)
- a = fac(4)
Behind the curtain: \textit{factorial}

\begin{algorithm}
\textbf{fac (n)}:
 \begin{algorithmic}
 \State \textbf{if} n \leq 1:
 \State \quad \textbf{return} 1
 \State \quad \textbf{return} n * \textbf{fac (n-1)}
 \end{algorithmic}
\end{algorithm}

\textbf{a} = \textbf{fac (4)}

\begin{tikzpicture}
 \node (fac4) at (0,0) {\textbf{fac(n)}};
 \node (fac3) at (0,-1) {\textbf{fac(n)}};
 \node (fac2) at (0,-2) {\textbf{fac(n)}};
 \node (fac1) at (0,-3) {\textbf{fac(n)}};
 \node (return4) at (0,-4.5) {return 4 * \textbf{fac(3)}};
 \node (return3) at (0,-5.5) {return 3 * \textbf{fac(2)}};
 \node (return2) at (0,-6.5) {return 2 * 1};
 \node (return1) at (0,-7.5) {return 1};
 \node (a) at (0,-8.5) {a = \textbf{fac(4)}};

 \draw[->,blue] (return4) -- (return3);
 \draw[->,blue] (return3) -- (return2);
 \draw[->,blue] (return2) -- (return1);
 \draw[->,blue] (return1) -- (a);
\end{tikzpicture}
Behind the curtain: *factorial*

```
Algorithm fac (n):
    if n <= 1:
        return 1
    return n * fac (n-1)
```

a = fac (4)
Algorithm fac (n):
 if n <= 1:
 return 1
 return n * fac (n-1)

a = fac (4)
Behind the curtain: \textit{factorial}

Algorithm \texttt{fac} (n):
\begin{itemize}
\item \texttt{if} \ n \ \leq \ 1:
 \begin{itemize}
 \item \texttt{return} \ 1
 \end{itemize}
\item \texttt{return} \ n \ \ast \ \texttt{fac} \ (n-1)
\end{itemize}

\[a = \texttt{fac} (4) \]
Behind the curtain: *factorial*

Algorithm `fac (n)`:

```
if n <= 1:
    return 1
return n * fac (n-1)
```

```
a = fac (4)  
```

```
a = 24
```
Components of a recursive solution

Base case
• A recursive solution must have one or more (non-recursive) base cases (when to stop)
 factorial(1) = 1

Recursive Step
• Recursive calls must progress towards the base case: a recursive solution to a problem of certain size should be expressed through the exact same solution with a smaller problem size
 factorial(n) = n * factorial(n-1)
Recursive step
You are implementing algorithm \(\text{power}(x,y) \) for computing \(x^y \).
What is your recursive step?

A. \(\text{power}(x) = \text{power}(x,y-1) \)

B. \(\text{power}(x) = x*\text{power}(x,y) \)

C. \(\text{power}(x) = x*\text{power}(x,y-1) \)

D. \(\text{power}(x) = y*\text{power}(x-1,y) \)

E. None of the above
Base case
You are implementing algorithm $\text{power}(x, y)$ for computing x^y. What is your base case?

A. If $x == 1$, return x
B. If $y == 1$, return x
C. If $y == 0$, return 1
D. If $y == 0$, return 0
E. None of the above
Order 1. What is printed?

```python
algorithm printNum(count):
    if count < 1:
        return
    print(count)
    printNum(count - 1)

printNum(4)
```

A. 4 3 2 1 0
B. 0 1 2 3 4
C. 4 3 2 1
D. 1 2 3 4
E. Error: stack overflow
What is printed? Solution

algorithm printNum(count):
 if count < 1:
 return
 print(count)
 printNum(count-1)

printNum(4)

Correct answer: C

4 3 2 1
Order 2. What is printed now?

```
algorithm printNum(count):
    if count < 0:
        return
    printNum(count-1)
    print(count)

printNum(4)
```

A. 4 3 2 1
B. 1 2 3 4
C. 4 3 2 1 0
D. 0 1 2 3 4
Fun. What is fun(5)?

Algorithm fun(n):
 if n <= 1:
 return 1
 else if n%2 == 0:
 return fun(n/2)
 else:
 return fun(n/2) + fun(n/2 + 1)

A. 3
B. 5
C. 2
D. 1
E. None of the above
Fun. What is fun(5)? Solution

Algorithm fun(n):
 if n <= 1:
 return 1
 else if n%2 == 0:
 return fun(n/2)
 else:
 return fun(n/2) + fun(n/2 + 1)

fun(5) = fun(2) + fun(3)
 fun(2) = fun(1)
 fun(1) = 1 → fun(2) = 1
 fun(3) = fun(1) + fun(2) = 1 + 1 = 2
 fun(5) = 1 + 2 = 3

A. 3
B. 5
C. 2
D. 1
E. None of the above
Reasoning about time complexity

Recursive step:

factorial \((n) = n \times \text{factorial} \ (n-1)\)

Recurrence relation for running time:

Express running time for size \(n\) through running time for smaller input: \(T(n) = 1 + T(n-1)\)
Reasoning about time complexity

\[T(n) = 1 + T(n-1) \]

Steps:

- Draw recursion tree
- Estimate the depth of the tree
- Estimate work done at each level of the tree
- Add all level work together
Factorial: recursion tree

Input size at each level Work at each level

\[T(n) = 1 + T(n-1) \]

\[n \quad c \]
\[n - 1 \quad c \]
\[n - 2 \quad c \]
\[\vdots \]
\[2 \quad c \]
\[1 \quad c \]

Tree depth: n

Total: \(cn = O(n) \)
Recursive Searching in Sorted Data
Separate and conquer

https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search
Problem: Searching in a sorted array

| **Input:** | A sorted array $A[low \ldots high]$
(∀$low \leq i < high : A[i] \leq A[i + 1]$).
A value key to search for. |
|------------|---|
| **Output:**| An index, i, $(low \leq i \leq high)$ where $A[i] = key$.
Otherwise, return -1 (NOT_FOUND). |
Searching in a Sorted Array

Example

\[
\begin{align*}
\text{search}(2) & \rightarrow -1 & \text{search}(20) & \rightarrow 3 \\
\text{search}(3) & \rightarrow 0 & \text{search}(20) & \rightarrow 4 \\
\text{search}(4) & \rightarrow -1 & \text{search}(60) & \rightarrow 6 \\
\text{search}(90) & \rightarrow -1
\end{align*}
\]
BinarySearch(A, low, $high$, key)

if $high < low$:
 return -1

$mid = low + \left\lfloor \frac{high-low}{2} \right\rfloor$

if $key == A[mid]$:
 return mid
else if $key < A[mid]$:
 return BinarySearch(A, low, $mid-1$, key)
else:
 return BinarySearch(A, $mid+1$, $high$, key)
Example: Searching for key 50
Example: Searching for key 50

BinarySearch(A, 0, 10, 50)
Example: Searching for key 50

BinarySearch(A, 0, 10, 50)
Example: Searching for key 50

BinarySearch(A, 0, 10, 50)
BinarySearch(A, 6, 10, 50)
Example: Searching for key 50

\[
\text{BinarySearch} (A, \ 0, \ 10, \ 50) \\
\text{BinarySearch} (A, \ 6, \ 10, \ 50)
\]
Example: Searching for key 50

BinarySearch(A, 0, 10, 50)
BinarySearch(A, 6, 10, 50)
BinarySearch(A, 9, 10, 50)

low mid high
Example: Searching for key 50

\[
\text{BinarySearch}(A, 0, 10, 50) \\
\text{BinarySearch}(A, 6, 10, 50) \\
\text{BinarySearch}(A, 9, 10, 50)
\]
Example: Searching for key 50

BinarySearch\((A, 0, 10, 50)\)
BinarySearch\((A, 6, 10, 50)\)
BinarySearch\((A, 9, 10, 50)\) → 9

0 1 2 3 4 5 6 7 8 9 10
3 5 8 10 12 15 18 20 20 50 60
Puzzle challenge: find the fake coin

- There are 8 identical-looking coins
- One of these coins is counterfeit and is known to be lighter than the genuine coins
- What is the minimum number of weighings needed to identify the fake coin with a two-pan balance scale without weights?
Iterative Version

BinarySearchIt(A, *low*, *high*, *key*)

```plaintext
while *low* ≤ *high*:
    mid = *low* + ⌊(high − *low*)/2⌋
    if *key* = A[mid]:
        return mid
    else if *key* < A[mid]:
        high = mid − 1
    else:
        low = mid + 1
return -1
```
Iterative Version

BinarySearchIt(A, low, high, key)

while low ≤ high:

 mid = low + ⌊(high - low) / 2⌋

 if key = A[mid]:
 return mid

 else if key < A[mid]:
 high = mid - 1

 else:
 low = mid + 1

return -1

Running time:

• The size of the input halves at each iteration
• Such loops terminate in \(\log n \) steps
• At each loop iteration we do a constant number of operations
• So the running time is \(O(\log n) \)
BinarySearch($A, \text{ low, high, key} \)$

if $high < low$:
 return -1

$mid = low + \left\lfloor \frac{high-low}{2} \right\rfloor$

if $key == A[mid]$:
 return mid

else if $key < A[mid]$:
 return BinarySearch($A, low, mid - 1, key \)$

else:
 return BinarySearch($A, mid + 1, high, key \)$

Recurrence relation for running time:

$T(n) = 1 + T(n/2)$
Recursion Tree

Binary Search:

\[T(n) = 1 + T\left(\frac{n}{2}\right) \]

Input size at each level

\[
\begin{align*}
\text{n} & \quad \text{Work at each level} \\
\text{n/2} & \quad \text{C} \\
\text{n/4} & \quad \text{C} \\
\cdot & \quad \cdot \\
\end{align*}
\]

\[\text{Tree depth: } \log_2 n \]

Total:

\[
\sum_{i=0}^{\log_2 n} c = O\left(\log n\right)
\]
Calculating runtime of recursive algorithms is not always that easy.
Recursive
Data Structures
When recursion feels natural

1. The *problem* is defined recursively:
 - **factorial** \((n) = n \times \text{factorial}(n-1) \)
 - \(\text{binarySearch}(A, 0, n) = \ldots \) and \(\text{binarySearch}(A, 0, n/2) \)

2. The *structure* is defined recursively:

```java
class Node {
    int data;
    Node next;
}
```

Linked List

```java
class Node {
    int data;
    Node leftChild;
    Node rightChild;
}
```

Binary tree
Example: recursive search in Linked Lists 1/3

Algorithm recurFind (Node current, int target, int position)
 if (current == null)
 return -1;
 if (current.data == target)
 return position;
 return recurFind (current.next, target, position+1);

pos = recurFind(head, target, 0);
Example: recursive search in Linked Lists 2/3

Algorithm recurFind (Node current, int target, int position)
 if (current == null)
 return -1;
 if (current.data == target)
 return position;
 return recurFind (current.next, target, position+1);

pos = recurFind(head, target, 0);
Example: recursive search in Linked Lists 3/3

```java
Algorithm recurFind (Node current, int target, int position)
    if (current == null)
        return -1;
    if (current.data == target)
        return position;
    return recurFind (current.next, target, position+1);

pos = recurFind(head, target, 0);
```

Recur with the next node and also increment position counter by 1
Which correctly recursively finds the size of a Linked List?

A. public int size(Node n){
 if (n.next == null){
 return 1;
 } else {
 return 1 + size(n.next);
 }
}

B. public int size(Node n){
 int s = 1;
 if (n.next == null){
 return s;
 } else {
 s++;
 return size(n.next);
 }
}

C. public int size(Node n){
 if (n == null){
 return 0;
 } else {
 return 1 + size(n.next);
 }
}

D. More than one of the above

E. None of the above
Recursion: summary

- Recursive algorithms are particularly appropriate when the underlying problem or the data to be treated are defined in recursive terms.

- To design a recursive algorithm:
 1. Think of the simplest possible input: that becomes the base case.
 2. Imagine that we know a solution to the problem of size n-1. Think of the steps needed to convert this solution to the solution to a larger problem. This is your recursive step.
Recursion vs. iteration

→ Recursion

◆ Each recursive call requires extra space on the stack
◆ If we get infinite recursion, the program will eventually run out of memory, cause stack overflow, and the program will terminate
◆ Solutions to some problems are easier to formulate recursively

→ Iteration

◆ Each iteration does not require extra space
◆ An infinite loop could loop forever since there is no extra memory being created
◆ Iterative solutions to a problem may not always be as obvious as a recursive solution

Generally, recursive solutions are slower than iterative solutions due to the overhead of function calls