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Recap: Definition

Binary search tree is a binary tree with the following 

property:

for each node with key x, all the nodes in its left 

subtree have keys smaller than x, and all the keys in 

its right subtree are greater than x.
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Recap: Operations on BST

➢ Search (k)

➢ Successor (k)/Predecessor (k)

➢ Add (k)

➢ Remove (k)

How fast is each operation? 



Example: search (k)

search (5)

Total questions asked before we reach 5: 4
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Recap: node depth (below the surface)
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Distance from the root: 

how many edges to go from the root to a given node
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Recap: node height (above the ground)
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Complexity: search (k)

search (5)

● The number of operations is the depth of the node in 
question

● In the worst case it is bounded by the height of the tree
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Complexity: search (k)

search (5)

● The complexity of all BST operations is O(h)
● What is the height of the tree in terms of n - number of 

nodes?
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Complexity: O (n)

search (4)

The height can be as bad as O(n) !
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We could do O(n) before: 

O(log(n)) V
O(log(n)) V

O(n) ×

O(n) ×

➔ Range Search:  

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

Linked List

O(n) ×

O(n) ×

O(1) V
O(1) V

➔Range Search:  

➔Nearest Neighbors:  

➔Insert:

➔Delete:

Sorted Array



Height can be much smaller than O(n)



Keeping height low

• The worst-case running time of all 

the operations is proportional to the 

tree height h

• To achieve optimal performance we 

need to keep the height low

• One possible way: avoid disbalance 

in tree nodes

• The node is out of balance if the 

heights of its children differ by a lot 
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The height of Null nodes
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To make it easier to compare balance of node’s children - let’s think of 

each BST node having exactly 2 children

If either left or right child is NULL - we consider it to be a special NULL 

node with height -1
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Defining balance

➢ One possible definition:

For every internal node v, the heights of the children of v may 

differ by at most 1

➢ That is, if a node v has children, x and y, then |h(x) − h(y)| ≤ 1.

➢ That implies that we should track the current height for each 

node of the BBST



How the balance can be destroyed

We start with a perfectly balanced 

tree
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How the balance can be destroyed

We insert key 2

The tree is still balanced (check)
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How the balance can be destroyed

We insert key 1

The root has 2 children x and y and 

the height of the corresponding 

subtrees differs by 2

If we now add 0 - we will make it even 

more unbalanced
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How the balance can be destroyed

We do not leave the tree like that -

we rearrange the heavier branch that 

resulted from adding 1

If we rebalance on time, we will never 

need to deal with difference > 2
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Rebalancing

The imbalance in this case is caused by 

the newly added node 1 and is 

presented by the path 1, 2, 3 (3 being 

the first imbalanced node on this path)

We need to rearrange nodes 1,2,3 

We can leave all of them in the same 

tree branch (all are < 5) 

1<2<3: so if we pull 2 on top, then 1 will 

be its left child, and 3 its right child
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Rebalancing: rotation

This method of rearrangement is called 

a rotation

It is also called a trinode restructuring
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Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing 

order: x < y < z
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Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing 

order: x < y < z

Pull y to the top and make x its left 

child and z its right child
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Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child
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General trinode restructuring: left-heavy 

subtree

The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z
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The tree is now balanced



Trinode restructuring: right-heavy subtree 

the same idea

The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z
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y

Trinode restructuring: right-heavy subtree

x z
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The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z



Trinode restructuring: right-left-heavy 

subtree: the same idea
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The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z



Trinode restructuring: right-left-heavy 

subtree
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The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z



Trinode restructuring: left-right-heavy 

subtree: the same idea
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The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z



Trinode restructuring: left-right-heavy 

subtree

x
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z
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The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z



Definition

AVL tree is a Binary Search Tree 

with the following property: for 

every internal node v in AVL tree, the 

heights of the children of v differ by 

at most 1

I.e. if the children of v are x and y, 

then |h(x) − h(y)| ≤ 1
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*Named after inventors Adelson-Velsky and Landis

AVL trees*



AVL tree: insertion

First, we perform regular insertion 

into BST and end up filling up one of 

the NULL nodes with the new value
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AVL tree: insertion

External node becomes a new 

internal node

After the insertion, some internal 

nodes may become unbalanced
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AVL tree: rebalancing after insertion

We can go up from the inserted node 

until we encounter the first 

unbalanced node v

Note that in order for a branch to 

become heavy, there must be at 

least 2 real nodes on this branch 

(think why one node is not enough)

83

9062

51 70

40

v



AVL tree: rebalancing after insertion

We keep track of the first unbalanced 

node v and the 2 nodes encountered 

before we reach v, and we name 

them according to their relative 

order as x, y, z
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AVL tree: rebalancing after insertion

We then perform a rotation moving y

on top of x and z - according to 

trinode restructuring rules
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AVL tree: rebalancing after insertion

Detach 4 children of x, y, z 8
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AVL tree: rebalancing after insertion

Detach 4 children of x, y, z 8
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AVL tree: rebalancing after insertion

Perform rotation
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AVL tree: rebalancing after insertion

Reattach children
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AVL tree: insertion summary

The rebalancing is local and involves only x, y, z - thus in constant time

The heavier subtree height is reduced by 1 - restoring AVL property for the 

parent node 
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Is this tree balanced?

A. The tree is balanced

B. The tree is unbalanced because of node 2

C. The tree is unbalanced because of node 3

D. The tree is unbalanced because of node 5

E. More than one unbalanced node



Which tree is the result of rebalancing 

the tree on the left?

A

B

C. None is correct

D. Both are possible



AVL tree: deletion - similar idea
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By removing a node from AVL tree some nodes may become unbalanced

But this time the branch from which the node was removed becomes 

lighter than its sibling

We need to restructure the heavier sibling to reduce its height
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AVL tree: rebalancing after deletion 

We move up the tree from the 
current NULL node until we 
encounter an internal node which is 
unbalanced
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AVL tree: rebalancing after deletion 

Then we move into the heavier 
subtree choosing the child with the 
larger height

We produce 3 nodes x < y < z to be 
restructured
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AVL tree: rebalancing after deletion 

We perform rotation around y 

This is accomplished with trinode 
restructuring as before
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AVL tree: rebalancing after deletion 

Trinode restructuring: detach 
children of x, y, z
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AVL tree: rebalancing after deletion 

Move y on top and reattach 4 
children
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AVL tree: rebalancing after deletion
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We fixed the imbalance in left subtree by increasing the height of the 

right child of the root by 1
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Remove (10)

Which tree represents the result of deleting the node with key 10 

from the tree below?

Original BST

remove(10)

A

B

C

D. None of the 

above

E. More than one is

correct



Is the result balanced?

Is the resulting BST balanced?

A. The tree is balanced

B. Tree is unbalanced because node 5 is 

unbalanced

C. Tree is unbalanced because node 12 is 

unbalanced

D. Tree is unbalanced because node 14 is 

unbalanced

E. None of the above (something else?)
Resulting BST


