
Maintaining Balance:

Balanced BST
Lecture 20

by Marina Barsky

Recap: Definition

Binary search tree is a binary tree with the following

property:

for each node with key x, all the nodes in its left

subtree have keys smaller than x, and all the keys in

its right subtree are greater than x.

3

1

2

5

4

C

A

B

E

D

Recap: Operations on BST

➢ Search (k)

➢ Successor (k)/Predecessor (k)

➢ Add (k)

➢ Remove (k)

How fast is each operation?

Example: search (k)

search (5)

Total questions asked before we reach 5: 4

7

82

41 9

1063

5

Recap: node depth (below the surface)

6

4

2

1 3

5

8

7 9

Level 0

Level 1

Level 2

Level 3

Distance from the root:

how many edges to go from the root to a given node

depth = 0

depth = 1

depth = 2

depth = 3

Recap: node height (above the ground)

63

42

21

10 30

50

81

70 90

Level 0

Level 1

Level 2

Level 3

Distance from the node to the bottom:

how many edges to go to the furthest leaf

depth = 0

depth = 1

depth = 2

depth = 3

Complexity: search (k)

search (5)

● The number of operations is the depth of the node in
question

● In the worst case it is bounded by the height of the tree

7

82

41 9

1063

5

Tree height = 4

Complexity: search (k)

search (5)

● The complexity of all BST operations is O(h)
● What is the height of the tree in terms of n - number of

nodes?

7

82

41 9

1063

5

h = 4

Complexity: O (n)

search (4)

The height can be as bad as O(n) !

9

106

5

1 3

2

4

We could do O(n) before:

O(log(n)) V
O(log(n)) V

O(n) ×

O(n) ×

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

Linked List

O(n) ×

O(n) ×

O(1) V
O(1) V

➔Range Search:

➔Nearest Neighbors:

➔Insert:

➔Delete:

Sorted Array

Height can be much smaller than O(n)

Keeping height low

• The worst-case running time of all

the operations is proportional to the

tree height h

• To achieve optimal performance we

need to keep the height low

• One possible way: avoid disbalance

in tree nodes

• The node is out of balance if the

heights of its children differ by a lot

9

106

5

1 3

2

4

h=4 h=0

The height of Null nodes

63

42

21

10 30

50

81

70

To make it easier to compare balance of node’s children - let’s think of

each BST node having exactly 2 children

If either left or right child is NULL - we consider it to be a special NULL

node with height -1

-1 -1 -1 -1

-1 -1 -1 -1

-1

Defining balance

➢ One possible definition:

For every internal node v, the heights of the children of v may

differ by at most 1

➢ That is, if a node v has children, x and y, then |h(x) − h(y)| ≤ 1.

➢ That implies that we should track the current height for each

node of the BBST

How the balance can be destroyed

We start with a perfectly balanced

tree

51

9030

-1-1 -1 -1

How the balance can be destroyed

We insert key 2

The tree is still balanced (check)

52

9031

20

-1 -1

-1 -1 -1

How the balance can be destroyed

We insert key 1

The root has 2 children x and y and

the height of the corresponding

subtrees differs by 2

If we now add 0 - we will make it even

more unbalanced

53

9032

21

10

0

-1

-1

-1 -1 -1

-1

How the balance can be destroyed

We do not leave the tree like that -

we rearrange the heavier branch that

resulted from adding 1

If we rebalance on time, we will never

need to deal with difference > 2

53

9032

21

10

-1

-1

-1 -1 -1

-1

Rebalancing

The imbalance in this case is caused by

the newly added node 1 and is

presented by the path 1, 2, 3 (3 being

the first imbalanced node on this path)

We need to rearrange nodes 1,2,3

We can leave all of them in the same

tree branch (all are < 5)

1<2<3: so if we pull 2 on top, then 1 will

be its left child, and 3 its right child

53

9032

21

10

-1

Rebalancing: rotation

This method of rearrangement is called

a rotation

It is also called a trinode restructuring

5

9

30

21

10

Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing

order: x < y < z
z

y

x

1
2

3

4

Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing

order: x < y < z

Pull y to the top and make x its left

child and z its right child

z

y

x

1
2

3

4

Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child
z

y

x

1
2

3 4

General trinode restructuring: left-heavy

subtree

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

z

y

x

1
2

3 4

The tree is now balanced

Trinode restructuring: right-heavy subtree

the same idea

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

x

y

z

3
4

2

1

y

Trinode restructuring: right-heavy subtree

x z

3
4

21

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Trinode restructuring: right-left-heavy

subtree: the same idea

x

y

z

3
2

4

1

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Trinode restructuring: right-left-heavy

subtree

x

y

z

3
2

4
1

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Trinode restructuring: left-right-heavy

subtree: the same idea

x

y

z

32

4

1

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Trinode restructuring: left-right-heavy

subtree

x

y

z

32
4

1

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Definition

AVL tree is a Binary Search Tree

with the following property: for

every internal node v in AVL tree, the

heights of the children of v differ by

at most 1

I.e. if the children of v are x and y,

then |h(x) − h(y)| ≤ 1

82

9061

50 70

v

x y

*Named after inventors Adelson-Velsky and Landis

AVL trees*

AVL tree: insertion

First, we perform regular insertion

into BST and end up filling up one of

the NULL nodes with the new value

82

9061

50 70

Add(4)

AVL tree: insertion

External node becomes a new

internal node

After the insertion, some internal

nodes may become unbalanced

83

9062

51 70

40

AVL tree: rebalancing after insertion

We can go up from the inserted node

until we encounter the first

unbalanced node v

Note that in order for a branch to

become heavy, there must be at

least 2 real nodes on this branch

(think why one node is not enough)

83

9062

51 70

40

v

AVL tree: rebalancing after insertion

We keep track of the first unbalanced

node v and the 2 nodes encountered

before we reach v, and we name

them according to their relative

order as x, y, z

83

9062

51 70

40

x

y

z

AVL tree: rebalancing after insertion

We then perform a rotation moving y

on top of x and z - according to

trinode restructuring rules

83

9062

51 70

40

x

y

z

AVL tree: rebalancing after insertion

Detach 4 children of x, y, z 8

96

5 7

4

x

y

z

Child 1 Child 2

Child 3

Child 4

AVL tree: rebalancing after insertion

Detach 4 children of x, y, z 8

9

6

5

74

x

y

z

Child 1 Child 2 Child 3 Child 4

AVL tree: rebalancing after insertion

Perform rotation

8

9

6

5

74

x

y

z

Child 1 Child 2 Child 3 Child 4

AVL tree: rebalancing after insertion

Reattach children

81

90

62

51

7040

x

y

z

Child 1
Child 2

Child 3 Child 4

AVL tree: insertion summary

The rebalancing is local and involves only x, y, z - thus in constant time

The heavier subtree height is reduced by 1 - restoring AVL property for the

parent node

81

90

62

51

7040

x

y

z

83

9062

51 70

40

x

y

z

Is this tree balanced?

A. The tree is balanced

B. The tree is unbalanced because of node 2

C. The tree is unbalanced because of node 3

D. The tree is unbalanced because of node 5

E. More than one unbalanced node

Which tree is the result of rebalancing

the tree on the left?

A

B

C. None is correct

D. Both are possible

AVL tree: deletion - similar idea

82

9061

50 70

By removing a node from AVL tree some nodes may become unbalanced

But this time the branch from which the node was removed becomes

lighter than its sibling

We need to restructure the heavier sibling to reduce its height

82

61

50 70

Delete 9

-1

AVL tree: rebalancing after deletion

We move up the tree from the
current NULL node until we
encounter an internal node which is
unbalanced

82

61

50 70

-1

AVL tree: rebalancing after deletion

Then we move into the heavier
subtree choosing the child with the
larger height

We produce 3 nodes x < y < z to be
restructured

82

61

50 70

x

y

z

-1

AVL tree: rebalancing after deletion

We perform rotation around y

This is accomplished with trinode
restructuring as before

8

6

5 7

x

y

z

AVL tree: rebalancing after deletion

Trinode restructuring: detach
children of x, y, z

8

6

5 7

x

y

z

Child 1

Child 2 Child 3

Child 4

AVL tree: rebalancing after deletion

Move y on top and reattach 4
children

86

5

7

x

y

z

Child 1
Child 2 Child 3 Child 4

AVL tree: rebalancing after deletion

8061

50

72

x

y

z

Child 1
Child 2 Child 3 Child 4

82

61

50 70

x

y

z

Child 1

Child 2 Child 3

Child 4

We fixed the imbalance in left subtree by increasing the height of the

right child of the root by 1

-1

Remove (10)

Which tree represents the result of deleting the node with key 10

from the tree below?

Original BST

remove(10)

A

B

C

D. None of the

above

E. More than one is

correct

Is the result balanced?

Is the resulting BST balanced?

A. The tree is balanced

B. Tree is unbalanced because node 5 is

unbalanced

C. Tree is unbalanced because node 12 is

unbalanced

D. Tree is unbalanced because node 14 is

unbalanced

E. None of the above (something else?)
Resulting BST

