abstract class BinaryTree<T>

public class EmptyTree<T>

public class ConsTree<T> extends BinaryTree<T>

public class ConsTree<T> extends BinaryTree<T> {

 public ConsTree(T data, BinaryTree<T> left, BinaryTree<T> right) {
 this.data = data;
 this.leftChild = left;
 this.rightChild = right;
 }

 public ConsTree(T data) {
 this(data, new EmptyTree<T>(), new EmptyTree<T>());
 }

Default constructor: two children initially set to EmptyTree
Example: recursive height()

Superclass: declares method `height`

```java
public abstract class BinaryTree<T> {
    public abstract int height();
}
```

```java
public class EmptyTree<T> extends BinaryTree<T> {
    @Override
    public int height() {
        return -1;
    }
}
```

```java
public class ConsTree<T> extends BinaryTree<T> {
    @Override
    public int height() {
        return Math.max(this.leftChild.height(),
                        this.rightChild.height()) + 1;
    }
}
```

Empty tree implements base case

Non-empty tree implements one recursive step
Corresponding recursive algorithm implemented above:

Algorithm height (tree)

```plaintext
if tree is EmptyTree:
    return -1

return 1 + Max(height(tree.left),
                height(tree.right))
```

Note how inheritance and polymorphism made our code more expressive – child trees are either Real trees or Empty trees, but both are defined as their superclass `BinaryTree`

No need to ask about the base case: when we reach an empty tree node, it automatically performs the base-case operation.
Set

• A *set* is simply a collection of *unique things*: the most significant characteristic of any set is that it does not contain duplicates

• We can put anything we like into a set. However, in Java we group together things of the same class (type): we could have a set of *Vehicles* or a set of *Animals*, but not both [as with any other collection]
Abstract Data Type: **Set**

Specification

Set is an Abstract Data Type which stores a collection of unique elements* and supports the following operations:

- **Contains (k)** - returns *True* if element *k* is in the collection. Returns *False* otherwise.
- **Add (k)** - adds element *k* to the collection
- **Remove (k)** - removes element *k* from the collection

The order of elements in the collection is not important
Sets are optimized for set operations:

Set A={1, 2, 3, 4} Set B={4, 3, 1, 6}

→ Intersection (set A, set B): creates a new set C consisting only of elements that are found both in A and in B:
 \[A \cap B = \{1, 3, 4\} \]

→ Union (set A, set B): combines all elements of A and B into a single set C (removes duplicates):
 \[A \cup B = \{1, 2, 3, 4, 6\} \]

→ Difference (set A, set B): creates a new set C that contains all the elements that are in A but not in B:
 \[A - B = \{2\} \]

Set Operations in Java: [DEMO](#)
Which data structure to use to implement Set ADT?

Main goal: **locate the element fast**

- **List, Array** - N elements are **unsorted** – search requires $O(N)$ time

- Sorted array - N elements are **sorted** – $O(\log N)$ binary search
 - Can keep sorted elements in **Balanced BST** for quick update operations

It doesn’t seem like we can do much better
Searching in time $O(1)$

- How about $O(1)$, that is, *constant-time search*?

- We *can* do it *if* we store data in an array organized in a particular way.
“Hash is a food, especially meat and potatoes, chopped and mixed together; a confused mess” (en.wiktionary.org/wiki/hash)
The obvious $O(N^2)$ solution:
for each character in order:
check whether that character is repeated

Problem 1: First repeating character

Input: String S of length N
Output: first repeating character (if any) in S
Problem 1: First repeating character

Input: String S of length N

Output: first repeating character (if any) in S

The number of all possible characters is 256 (ASCII characters)

- We create an array H of size 256 and initialize it with all zeros
- For each input character c go to the corresponding slot $H[c]$ and set count at this position to 1
- Since we are using arrays, it takes constant time for reaching any location
- Once we find a character for which counter is already 1 - we know that this is the one which is repeating for the first time
Because the total number of all possible keys is small (256), we were able to map each key (character) to a single memory location!

This method of storing keys in the array is called **direct addressing**: store key k in position k of the array.
Problem 2: First repeating number

Input: Array A containing N integers

Output: first repeating number (if any) in A

- This very similarly looking problem cannot be solved with *direct addressing*
- The total number of all possible integers is $2,147,483,647$. This is the universe of all possible keys - thus the size of the array
- What if we have only 25 integers to store? Impractical
- Impossible: if array elements are floats/strings/objects
- For these cases we use a technique of *hashing*: we convert **each element into a number** using *hash function*
Intuition: hashing inputs

➢ Suppose we were to come up with a “magic function” that, given a key to search for, would tell us the exact location in the array such that
 ○ If key is in that location, it’s in the array
 ○ If key is not in that location, it’s not in the array

➢ This function would have no other purpose

➢ If we look at the function’s inputs and outputs, the connection between them won’t “make any sense”

➢ This function is called a *hash function* because it “makes hash” of its inputs
Assume the hash function $h(x) = x \% 6$. What bucket (position in the array) will 27 hash to?

A. 2

[24, 37, __, __, __, 11]

B. 3

C. 15

D. None of the above
Assume the hash function \(h(x) = x \% 6 \). What bucket (position in the array) will 39 hash to?

A. 2
B. 3
C. 4
D. None of the above

[24, 37, __, __, __, 11]
Case study: hashing students

➢ Suppose we want to store student objects in the array

➢ For each student we apply the following hash function:

 \[
 \text{hashCode(}\text{Student}) = \text{length}\ (\text{Student.lastName})
 \]

This gives us the following values:

- \(\text{hashCode(‘Chan’)}=4\)
- \(\text{hashCode(‘Yam’)}=3\)
- \(\text{hashCode(‘Li’)}=2\)
- \(\text{hashCode(‘Jones’)}=5\)
- \(\text{hashCode(‘Taylor’)}=6\)
Array of students: *hash table*

- We place the students into array slots which correspond to the computed hash values:
 - `hashCode('Chan') = 4`
 - `hashCode('Yam') = 3`
 - `hashCode('Li') = 2`
 - `hashCode('Jones') = 5`
 - `hashCode('Taylor') = 6`

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Li</td>
</tr>
<tr>
<td>3</td>
<td>Yam</td>
</tr>
<tr>
<td>4</td>
<td>Chan</td>
</tr>
<tr>
<td>5</td>
<td>Jones</td>
</tr>
<tr>
<td>6</td>
<td>Taylor</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Good hash function: length of the last name

- Our hash function is easy to compute
- An array needs to be of size 18 only, since the longest English surname, Featherstonehaugh (Guinness, 1996), is only 17 characters long
- We waste a little bit of space with entries 0,1 of the array, which do not seem to be ever occupied. But the waste is not bad either

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Li</td>
</tr>
<tr>
<td>3</td>
<td>Yam</td>
</tr>
<tr>
<td>4</td>
<td>Chan</td>
</tr>
<tr>
<td>5</td>
<td>Jones</td>
</tr>
<tr>
<td>6</td>
<td>Taylor</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Bad hash function: length of the last name

➢ Suppose we have a new student: Smith
 ○ hashValue(‘Smith’) = 5

➢ When several values are hashed to the same slot in the array, this is called a collision

➢ Now what?
Looking for a good hash function: day of birth

➢ What about the day of birth?
 ○ We know that this would be only 365 (366) possible values
 ○ The birth day of each student is randomly distributed across this range, and this hash function is easy to compute
Birthday paradox

For a college with only \(n=24 \) students, the probability that any 2 of them were born on the same day is > 0.5

Let’s approximate this probability:
- The probability of any two people not having the same birthday is:
 \[p = \frac{364}{365} \]
- The number of possible student pairs is \(\binom{n}{2} = \frac{n(n-1)}{2} = 276 \)
- The probability for \(n \) students of not having birthday on the same date is \(p^{n(n-1)/2} \). For 24 students this gives: \((\frac{364}{365})^{276} \approx 0.47 \).
- Then the probability of finding a pair of students colliding on their birthday is 1.00 - 0.47 = 0.53!

This is called a birthday paradox
http://commons.wikimedia.org/wiki/File:Birthday_Paradox.svg
In search for a perfect hash function

A perfect hash function is a function that:
1. When applied to an Object, returns a number
2. When applied to equal Objects, returns the same number for each
3. When applied to unequal Objects returns different numbers for each, preventing collisions.
4. The numbers returned by hash function are evenly distributed between the range of the positions in the array
5. We also require for our hash function to be efficiently computable

non-random inputs \(\rightarrow\) random numbers?
In search for a perfect hash function

➢ How to come up with this perfect hashing function?
➢ In general – there is no such magic function 😞
 ○ In a few specific cases, where all the possible values are known in advance, it is possible to define a perfect hash function. For example hashing objects by their SSN numbers. But this will require an array to be of size 10^9

➢ It seems that collisions are essentially unavoidable
➢ What is the next best thing?
 ○ A perfect hash function would have told us exactly where to look
 ○ However, the best we can do is a function that tells us in what area of an array to start looking!
Which of the following hash functions for Strings are legal?

I. Return a random number.
II. Return 0 if the string is of even length, 1 if it's of odd length.
III. Add together all the ASCII values of the characters.

A. All of the above
B. I, II
C. II, III
D. I, III
E. None of the above
Hashing strings by summing up their character values

➢ It seems like a good idea to map each student surname into a number by adding up the ranks (or ASCII codes) of letters in this surname.

\[
\text{hashCode} (S) = \sum_{i=0}^{\text{len}(S)} \text{rank}(S[i])
\]
What a great hash function!

\[
\text{hashCode} (S) = \sum_{i=0}^{\text{len}(S)} \text{rank}(S[i])
\]

- XmlNode('Chan') = 3 + 8 + 1 + 14 = 26
- XmlNode('Yam') = 24 + 1 + 13 = 38
- XmlNode('Li') = 12 + 9 = 21
- XmlNode('Jones') = 10 + 15 + 14 + 5 + 18 = 62
- XmlNode('Taylor') = 19 + 1 + 24 + 12 + 15 + 17 = 88
- XmlNode('Smith') = 18 + 13 + 9 + 19 + 8 = 67
Still a lot of collisions!

\[
\text{hashCode}(S) = \sum_{i=0}^{\text{len}(S)} \text{rank}(S[i])
\]

→ Not only \(\text{hashCode}('Yam') = \text{hashCode}('May')\)
→ But \(\text{hashCode}('Chan') = \text{hashCode}('Lam')\)!

The function takes into account the value of each character in the string, but **not the order of characters**
The summation is not a good choice for sequences of elements where the order has meaning.

Alternative: choose \(A \neq 1 \), and use a hash function for string \(S \) of length \(N \):

\[
\text{hashCode}(S) = \sum_{i=0}^{N-1} S[i] \cdot A^{N-1-i} = S[0] \cdot A^{N-1} + S[1] \cdot A^{N-1-1} + S[2] \cdot A^{N-1-2} + \ldots + S[N-1] \cdot A^{N-1-(N-1)}
\]

This is a polynomial of degree \(N \) for \(A \), and the elements (characters) of the String are the coefficients of this polynomial.
Example: polynomial hashing

\[\text{hashCode}(S) = \sum_{i=0}^{N-1} S[i] \cdot A^{N-1-i} = S[0] \cdot A^{N-1} + S[1] \cdot A^{N-1-1} + S[2] \cdot A^{N-1-2} + \ldots + S[N-1] \cdot A^{N-1-(N-1)} \]

\(S_1 = \text{‘Yam’} \)
\(S_2 = \text{‘May’} \)
\(A = 31 \)

\[\text{hashCode}(S_1) = 24 \times 31^2 + 1 \times 31^1 + 13 \times 31^0 = 23108 \]
\[\text{hashCode}(S_2) = 13 \times 31^2 + 1 \times 31^1 + 24 \times 31^0 = 12548 \]

➢ Instead of using the summation of all character values, the polynomial hash function introduces interactions between different bits of successive characters that will provoke or spread randomness of the result
How to compute polynomial of degree N in time $O(N)$

Horner’s method:

\[p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots + a_n x^n \]

\[= a_0 + x \left(a_1 + x \left(a_2 + x \left(a_3 + \cdots + x (a_{n-1} + x a_n) \cdots \right) \right) \right) \]

Let $x=31$, $a_0 \ldots a_n$ represent $n+1$ characters of string S:

```java
public int hashCode(){
    int hash=0;
    for (int i=0; i< length(); i++)
        hash=hash*31+S[i];
    return hash;
}
```

That is ~how `hashCode()` is implemented inside Java `String` class.
Java String hashCode()

➢ Polynomial hashing is quite a good hash function: for different strings it returns mostly different values which are well spread over the range of all possible integers

➢ This hash function is also very efficient, since we need only \(n = \text{length()} \) steps to compute it
Reducing the range of `hashCode` to the capacity of the array

➢ The output of hash function is a number randomly distributed over the range of all integers.
 ○ But we need to store our objects in the array of size \(M \)

➢ Step 2: **compression mapping**
 ○ Converting integers in range \(~ [0,400000000]\) to integers in range \([0, M]\)
 ○ The simplest way to do it: \(|hashCode| \ MOD \ M\)
 ○ In practice, the MAD (Multiply Add and Divide) method:
 \(|(A*hashCode+B) \ MOD \ M|\)
 The best results when \(A, B \) and \(M \) are primes
Full hashing

Key

hashcode(Key)

{Integers}

Compression Map

{0, 1, … N-1}
Hashing Students to 7 slots

Applying the polynomial hash function:

<table>
<thead>
<tr>
<th>Name</th>
<th>Hash Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor</td>
<td>-880692189</td>
</tr>
<tr>
<td>Yam</td>
<td>119397</td>
</tr>
<tr>
<td>Li</td>
<td>345</td>
</tr>
<tr>
<td>Lee</td>
<td>107020</td>
</tr>
<tr>
<td>Lam</td>
<td>106904</td>
</tr>
<tr>
<td>Roy</td>
<td>113116</td>
</tr>
</tbody>
</table>

Applying the \(|(11*\text{hashCode}+13) \mod 7|\) compression mapping:

<table>
<thead>
<tr>
<th>Name</th>
<th>Array Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor</td>
<td>6</td>
</tr>
<tr>
<td>Yam</td>
<td>2</td>
</tr>
<tr>
<td>Li</td>
<td>4</td>
</tr>
<tr>
<td>Lee</td>
<td>5</td>
</tr>
<tr>
<td>Lam</td>
<td>3</td>
</tr>
<tr>
<td>Roy</td>
<td>1</td>
</tr>
<tr>
<td>Taylor</td>
<td>6</td>
</tr>
</tbody>
</table>
No more collisions?

• Does a good hash **always** produce different hash code for different strings?

The answer is **NO**.

If you run the code in the box, you will find out that
• The words **Aa** and **BB** have the same **hashCode**
• Words **variants** and **gelato** hash to the same value
• ...

• We have to be prepared to deal with **collisions**, since they are **unavoidable**

```java
public static void main(String [] args) {
    String [] words = new String[6];
    words[0] = "Aa";
    words[1] = "BB";
    words[2] = "variants";
    words[3] = "gelato";
    words[4] = "misused";
    words[5] = "horsemints";

    for(int i=0; i<6; i++) {
        System.out.print("Hash code of "+words[i]+": ");
        System.out.println(words[i].hashCode());
    }
}
```
Collision resolution strategies

➢ Open addressing:
 ○ Linear probing
 ○ Quadratic probing
 ○ Double hashing

➢ Separate chaining
Linear probing

What can we do when two different values attempt to occupy the same slot in the array?

- Search from there for an empty location
 - Can stop searching when we find the value or an empty location
 - Search must be end-around (circular array)
Add with linear probing

• Suppose you want to add seagull to this hash table

• Also suppose:
 • hashCode('seagull') = 143
 • table[143] is not empty
 • table[143] != seagull
 • table[144] is not empty
 • table[144] != seagull
 • table[145] is empty

• Therefore, put seagull at location 145
Find with linear probing: seagull

- Suppose you want to look up seagull in this hash table.
- Also suppose:
 - `hashCode(seagull) = 143`
 - `table[143]` is not empty
 - `table[143] != seagull`
 - `table[144]` is not empty
 - `table[144] != seagull`
 - `table[145]` is not empty
 - `table[145] == seagull`
- We found seagull at location 145.
Find with linear probing: cow

• Suppose you want to look up cow in this hash table

• Also suppose:
 • $\text{hashCode(cow)} = 144$
 • table[144] is not empty
 • $\text{table[144]} \neq \text{cow}$
 • table[145] is not empty
 • $\text{table[145]} \neq \text{cow}$
 • table[146] is empty

• If cow were in the table, we should have found it by now

• Therefore, it isn’t here
Add with linear probing

• Suppose you want to add **hawk** to this hash table

• Also suppose
 • `hashCode(hawk) = 143`
 • `table[143]` is not empty
 • `table[143] != hawk`
 • `table[144]` is not empty
 • `table[144] == hawk`

• **hawk** is already in the table, so do nothing
Add with linear probing

• Suppose you want to add cardinal to this hash table

• Also suppose:
 • hashCode(cardinal) = 147
 • The last location is 148
 • 147 and 148 are occupied

• Solution:
 • Treat the table as circular; after 148 comes 0
 • Hence, cardinal goes in location 0 (or 1, or 2, or ...)

• . . .
 141
 142
 143
 144
 145
 146
 147
 148
General problem with open addressing: deletion

➢ What happens if we delete sparrow?
 ○ hashCode(sparrow)=143
 ○ hashCode(seagull)=143
General problem with open addressing: deletion

➢ What happens if we delete sparrow?
 ○ hashCode(sparrow)=143
 ○ hashCode(seagull)=143
General problem with open addressing: deletion

➢ What happens if we delete sparrow?
 o hashCode(sparrow)=143
 o hashCode(seagull)=143

➢ Now when searching for seagull we check
 o table[143] is empty
 o We can not find seagull!
Solution to the deletion problem

➢ After we delete sparrow we put a special sign deleted instead of empty
 ○ hashCode(sparrow)=143
 ○ hashCode(seagull)=143

➢ Now when searching for seagull we check
 ○ table[143] is deleted
 ○ We skip it
 ○ table[144] is not empty
 ○ table[144] != seagull
 ○ table[145]=seagull

We found seagull!

➢ The deleted slots are filling up during the subsequent insertions
Group Work

• Add the following keys, in order, to an initially empty Hash table of size N=13. The hash function is hash(x) = x % 13

10, 15, 20, 30, 40, 35

• Resolve collisions with linear probing
Another problem with linear probing: clustering

➢ One problem with the above technique is the tendency to form “clusters”

➢ A *cluster* is a consecutive area in the array not containing any open slots

➢ The bigger a cluster gets, the more likely it is that new values will hash into the cluster, and make it even bigger

➢ Clusters cause degradation in the efficiency of search

➢ Here is a *non*-solution: instead of stepping one ahead, step \(k \) locations ahead
 ○ The clusters are still there, they’re just harder to see
 ○ Unless \(k \) and the table size are mutually prime, some table locations are never even checked
Solution 1 to clustering problem: Quadratic probing

➢ As before, we first try slot $j=hashCode \ MOD \ M$.
➢ If this slot is occupied, instead of trying slot $j=(j+1) \ MOD \ M$, try slot:

$$j = |(hashCode+i^2) \ MOD \ M|,$$

where i takes values with increment of 1 and we continue until j points to an empty slot

➢ For example if position $hashCode$ is initially 5, and $M=7$ we try:

$j = 5 \ MOD \ 7 = 5$

$j = (5 + 1^2) \ MOD \ 7 = 6 \ MOD \ 7 = 6$

$j = (5 + 2^2) \ MOD \ 7 = 9 \ MOD \ 7 = 2$

$j = (5 + 3^2) \ MOD \ 7 = 14 \ MOD \ 7 = 0$ etc.
Under quadratic probing, with the following array, where will an item that hashes to position 3 get placed?

\[j = |(hashCode + i^2) \mod M|, \text{ hashCode} = 3, M = 10 \]

A. 0
B. 2
C. 5
D. 9
E. None of the above
Problems with Solution 1: Quadratic probing

➢ Quadratic probing helps to avoid the clustering problem of a linear probing
➢ But it creates its own kind of clustering, where the filled array slots “bounce” in the array in a fixed pattern
➢ In practice, even if M is a prime, this strategy may fail to find an empty slot in the array that is just half full!
Solution 2 to clustering problem: Double hashing

- In this case we choose the secondary hash function: \(\text{stepHash}(k) \).

- If the slot \(j = \text{hashCode} \mod M \) is occupied, we iteratively try the slots
 \[
 j = |(\text{hashCode}+i*\text{stepHash}) \mod M|
 \]

- The secondary hash function \(\text{stepHash} \) is not allowed to return 0

- The common choice (\(Q \) is a prime):
 \[
 \text{stepHash}(S)=Q-(\text{hashCode}(S) \mod Q)
 \]
Collision resolution strategies

➢ Open addressing:
 ○ Linear probing
 ○ Quadratic probing
 ○ Double hashing

➢ Separate chaining
Separate chaining

➢ The previous solutions use open addressing: all entries go into a “flat” (unstructured) array

➢ Another solution is to store in each location the head of a linked list of values that hash to that location

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>robin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>sparrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>hawk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>bluejay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>owl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Separate chaining: *Find*

- The Hash table becomes an array of M linked lists

- To find an Object with hashCode i
 - Retrieve List head pointer from `table[i]`
 - Scan the chain of links

- Running time depends on the length of the chain
“If we are adding a new key to the hash table and the position at `hashCode` is already occupied by a different key, we can place the new key in the next available empty slot in the underlying array.”

This collision resolution technique is of type:

A. Open addressing
B. Direct addressing
C. Separate chaining
D. Linear probing
E. More than one is correct
Separate Chaining vs. Open Addressing

➢ If the space is not an issue, separate chaining is the method of choice: it will create new list elements until the entire memory permits.

➢ If you want to be sure that you occupy exactly M array slots, use open addressing, and use the probing strategy which minimizes the clustering.
ADT Set operations: performance

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Worst case</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Search (Contains)</td>
<td>Add</td>
</tr>
<tr>
<td>Balanced Binary tree</td>
<td>log N</td>
<td>log N</td>
</tr>
<tr>
<td>Unsorted List (Array or Linked list)</td>
<td>N</td>
<td>1**</td>
</tr>
<tr>
<td>Hash table with linear probing</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Hash table with separate chaining</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

If we know that new key is unique

Given a good hash function
Final notes about Hash table performance

➢ Hash tables are actually surprisingly efficient
➢ Until the array is about 70% full, the number of probes (places looked at in the table) is typically only 2 or 3
➢ Sophisticated mathematical analysis is required to prove that the expected cost of inserting or looking something up in the hash table, is $O(1)$
➢ Even when the table is nearly full (leading to occasional long searches), overall efficiency is usually still quite high
Common implementations of Set ADT using Hash Tables

➢ Set:
 ○ *unordered_set* in C++
 ○ *HashSet* in Java
 ○ *set* in Python
Now you know that in Python:

list (array)
t = [1,2,3,4, ..., n]

if 8 in t:
 print('found')

set
s = {1, 2, 3 ... n}

if 8 in s:
 print('found')

Time O(n)
Time O(1)
Which tasks can be efficiently solved using the Hash Table implementation of Set ADT?

A. Removing duplicates from the array of integers
B. Quickly checking if student name is in the class roster
C. Testing if all the elements of a given array are unique
D. Given a list of family names and a given family name s, counting how many times s appears in the array.
We use an unsorted Array List to implement Set ADT. Choose the row with the correct runtime for each operation:

<table>
<thead>
<tr>
<th></th>
<th>Remove(k)</th>
<th>Add(k)</th>
<th>Find(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>B</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>C</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>D</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>E</td>
<td>None of the above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We use Balanced Binary Search Tree to implement Set ADT. Choose the row with the correct runtime for each operation

<table>
<thead>
<tr>
<th></th>
<th>Remove(k)</th>
<th>Add(k)</th>
<th>Find(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>B</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>C</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>D</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>E</td>
<td>None of the above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We use a **Hash Table** to implement **Set ADT**.
Choose the row with the correct runtime for each operation

<table>
<thead>
<tr>
<th></th>
<th>Remove(k)</th>
<th>Add(k)</th>
<th>Find(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>B</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>C</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>D</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

E. None of the above
Sometimes we just want a set of things—objects are either in it, or they are not in it.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Li</td>
</tr>
<tr>
<td>3</td>
<td>Yam</td>
</tr>
<tr>
<td>4</td>
<td>Chan</td>
</tr>
<tr>
<td>5</td>
<td>Jones</td>
</tr>
<tr>
<td>6</td>
<td>Taylor</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Sets and Maps

➢ Sometimes we want a map—a way of looking up one thing based on the value of another
 ○ We use a key to find a place in the map
 ○ The associated value is the information we are trying to look up

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Li, Li info</td>
</tr>
<tr>
<td>3</td>
<td>Yam, Yam info</td>
</tr>
<tr>
<td>4</td>
<td>Chan, Chan info</td>
</tr>
<tr>
<td>5</td>
<td>Jones, Jones info</td>
</tr>
<tr>
<td>6</td>
<td>Taylor, Taylor info</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

MAP = ASSOCIATIVE ARRAY, DICTIONARY
What is a key and what is a value?

The answer: depends on the application

<table>
<thead>
<tr>
<th>Key</th>
<th>Phone number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>11111</td>
</tr>
<tr>
<td>Yam</td>
<td>22111</td>
</tr>
<tr>
<td>Chan</td>
<td>33111</td>
</tr>
<tr>
<td>Jones</td>
<td>11444</td>
</tr>
<tr>
<td>Taylor</td>
<td>55111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111</td>
<td>Li</td>
</tr>
<tr>
<td>22111</td>
<td>Yam</td>
</tr>
<tr>
<td>33111</td>
<td>Chan</td>
</tr>
<tr>
<td>11444</td>
<td>Jones</td>
</tr>
<tr>
<td>55111</td>
<td>Taylor</td>
</tr>
</tbody>
</table>
Abstract Data Type: **Map**

Specification

Map is an Abstract Data Type which supports the following operations:

- **Set** \((k, e)\) - adds element \(e\) to the collection and associates it with key \(k\)
- **Get** \((k)\) - returns the element associated with key \(k\)
- **Contains** \((k)\) - returns *True* if there is an element associated with the key \(k\). Returns *False* otherwise
- **Remove** \((k)\) - removes element with key \(k\) from the collection

* The main efficiency of both Set and Map comes from the ability to **find the item quickly**
Common implementations of Set and Map ADT

➢ Set:
 ○ *unordered_set* in C++
 ○ *HashSet* in Java
 ○ *set* in Python

➢ Map:
 ○ *unordered_map* in C++
 ○ *HashMap* in Java
 ○ *dict* in Python