Algorithms

Bounding functions. Big Oh

Lecture 9 by Marina Barsky
Still exact analysis can be hard!

Best, worst, and average case are all difficult to deal with because the *precise* function details may be complicated:

![Graph showing upper and lower bounds of a function](Image)

It is easier to talk about *upper* and *lower bounds* of a function.

Asymptotic notation (O, Θ, Ω) allows us to describe complexity functions in terms of these bounds.
Bounding from above: Big Oh

\(f(n) = O(g(n)) \) if there are positive constants \(n_0 \) and \(c \) such that to the right of \(n_0 \) the value of \(f(n) \) always lies on or below \(c \cdot g(n) \)
Other bounding functions

- The definitions imply a constant n_0 beyond which they are satisfied
- We do not care about small values of n
Big Oh guarantees

- Big O guarantees that for a given input size n the algorithm never exceeds the value of some function on n
Big Oh ignores low order terms

- For Big-O analysis, we care more about the part that grows fastest as the input grows, because everything else is quickly becomes negligible small as n gets very large
Low order terms are quickly eclipsed by higher-order terms
Big Oh ignores constants

• For big values of n, the terms that contain variable n quickly dominate all the values that stay constant
• Thus to compare $g(n) = 1000n$ and $h(n) = 0.05n^2$ we should ignore constants and compare $O(n)$ with $O(n^2)$. The second algorithm is slower than the first
We ignore constants
Big Oh represents the rate of growth

• We use Big O Notation to talk about how quickly the runtime grows with the increase in the input size

• For example, let’s say the algorithm runs in total $2n(n-1)$ steps

 • For one thing, for REALLY large values of n, such as $n=1,000,000$ $2n(n-1)$ is pretty much the same thing as $2n^2$.

 • For another, what happens if we increase the size of the list by a factor of k, from n to kn?

• The number of basic operations will increase by a factor of $2(kn)^2/2n^2 = k^2$
Big Oh represents the rate of growth

- We use Big O Notation to talk about how quickly the runtime grows with the increase in the input size.
- Big O bounds the speed of growth:

 so we can say things like the runtime grows “on the order of the size of the input” (O(n)) or “on the order of the square of the size of the input” (O(n²))
Reasoning about time complexity

• When you *intuitively* understand an algorithm, the reasoning about the run-time of an algorithm can be done in your head.

• But it is usually much easier to estimate complexity given a precise-enough pseudocode (or a code).

• To get big-Oh:
 • Count all the elementary operations
 • Ignore (remove) lower order (i.e. slower growing) terms
 • Remove constant factors

• For example: \(5n^3+3n^2+177\) is still \(O(n^3)\)
What is $O()$ of $f(n) = n(n+1)/2$?

A. $O(n^2)$
B. $O(2n^2)$
C. $O((n^2 + n)/2)$
D. $O(n^3)$
E. I don't know
Let’s do some Big-Oh analysis!
A. Algorithm that sums numbers from 1 to n

```c
int A(int n) {
    int sum = 0;
    for (int i=1; i <= n; i++)
        sum += i;
    return sum;
}
```

A. O(log n)
B. O(n)
C. O(n^2)
D. O(n+1)
A. Algorithm that sums numbers from 1 to n

```c
int A(int n) {
    int sum = 0;
    for (int i=1; i <= n; i++)
        sum += i;
    return sum;
}
```

Answer B: One loop with n iterations. $O(n)$.
Answer D: $O(n+1)$ is also correct, but we usually remove constants.
int B(int n) {
 int sum = 0;
 for (int i=1; i <= 2*n; i++)
 for (int j=0; j < 5; j++)
 sum += j;
 return sum;
}
int B(int n) {
 int sum = 0;
 for (int i=1; i <= 2*n; i++)
 for (int j=0; j < 5; j++)
 sum += j;
 return sum;
}

Analysis: The inner for-loop (on j) always adds 5 numbers together, and the outer loop (on i) does this 2*n times. So this is O(5*2*n) = O(n).

Answers B and D are both correct, but answer B is better.
C. Nested loop?

int C(int n) {
 int sum = 0;
 for (int i=1; i <= n; i++)
 for (int j=0; j <= n; j++)
 sum += j;
 return sum;
}

A. \(O(n) \)
B. \(O(n^2) \)
C. \(O(n^n) \)
D. The answer depends on the value of \(n \)
int C(int n) {
 int sum = 0;
 for (int i=1; i <= n; i++)
 for (int j=0; j <= n; j++)
 sum += j;
 return sum;
}

A. O(n)
B. O(n^2)
C. O(n^n)
D. The answer depends on the value of n

Analysis: The inner loop (on j) has n steps. It runs n times: for each value of i from 1 to n. Altogether this is n+n+n+ ...+ n steps. So this is B: O(n^2).
D. Loops

```c
int D(int n) {
    int sum = 0;
    for (int i=1; i <= n; i++)
        sum += i*i;
    for (int j=0; j < n; j++)
        sum -= j;
    for (int k = 0; k < 2*n; k++)
        sum = sum*k;
    return sum;
}
```

A. O(n)
B. O(n^2)
C. O(n^3)
D. O(n^n)
int D(int n) {
 int sum = 0;
 for (int i=1; i <= n; i++)
 sum += i*i;
 for (int j=0; j < n;
 j++)
 sum -= j;
 for (int k = 0; k < 2*n; k++)
 sum = sum*k;
 return sum;
}

Analysis: Note that the loops are sequential, not nested. The loop on i does n additions. After it finished, the loop on j does n subtractions. Then the loop on k does 2n multiplications. Altogether there are 4n steps. This is A: O(n)
int E(int n) {
 int count = 0;

 for (int i=n/2; i<n; i++) {
 int j = 0;

 while (j + n/2 <= n) {
 int k = 1;

 while (k <= n) {
 count = count + 1;
 k = k*2;
 }
 j = j + 1;
 }
 }
}
E. While...

```c
int E(int n) {
    int count = 0;

    for (int i=n/2; i<n; i++) {
        int j = 0;

        while (j + n/2 <= n) {
            int k = 1;

            while (k <= n) {
                count = count + 1;
                k = k*2;
            }
            j = j + 1;
        }
    }
}
```

A. O(n^3)
B. O(n \log^2 n)
C. O(n^2 \sqrt{n})
D. O(n^2 \log n)

Analysis: 3 nested loops. We start with the innermost loop – loop on k. It runs \log n times.
The next loop is on j. It runs n/2 times.
The outer loop also runs n/2 times.
The loops are nested so we multiply: n/2 * n/2 * \log n = O(n^2 \log n)
int F(int n) {
 if (n == 1) return 1;

 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 System.out.println("*");
 break;
 }
 }
}

A. O(n^2)
B. O(n)
C. O(1)
D. O(2n)
F. Break

```java
int F(int n) {
    if (n == 1) return 1;

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            System.out.println("*");
            break;
        }
    }
}
```

Correct answer is B