Who wants to be a millionaire Computer Scientist?

Preparation for the finals

Game 2

• Identify the code which does not run in time O(1)

```
Α.
for (i = 0; i < 10; i++)
                                        i = 0;
 sum += num2;
                                        while (i < listSize) {
                                         sum = sum + I;
                                         i++;
В.
                                        D.
if (x > y)
                                        num = arr[i];
  return x;
                                        arr[i + 1] = num + 1;
                                        C D
     Α
                                            В
     В
```

• Identify the code which does not run in time O(1)

```
Α.
for (i = 0; i < 10; i++)
                                         i = 0;
 sum += num2;
                                         while (i < listSize) {
                                          sum = sum + I;
                                          i++;
В.
                                         D.
if (x > y)
                                         num = arr[i];
  return x;
                                         arr[i + 1] = num + 1;
    Α
    B
```

The correct answer is C.

• Which of the following is an example of constant time O(1)?

- A. Finding the minimum value of an array
- B. Binary search
- C. Accessing an element of an array
- D. Bubble sort

Α		C	
В		D	

•	Which of t	the following	is an	example of	constant time C	(1	? (
---	------------	---------------	-------	------------	-----------------	----	-----

- A. Finding the minimum value of an array
- B. Binary search
- C. Accessing an element of an array
- D. Bubble sort

 A
 C

 B
 D

• What is the complexity of *heapsort*?

A O (n)

B O (n log n)

C O (log n)
D O (n²)

What is the complexity of heapsort?

A O (n)
B O (n log n)

C O (log n)
D O (n²)

The correct answer is B.

ListTraverseReverse must print a linked list in reverse order.
 Which XXX should replace the missing statement?

```
ListTraverseReverse(list) {
    XXX
}

printReverse(node) {
    if (node is not null) {
       printReverse(node----)next)
       print node
    }
}
```

- A. printReverse(list--->head)
- B. printReverse(list)
- C. printReverse(list--->head--->next)
- D. printReverse(list--->tail)

A B

C D ListTraverseReverse must print a linked list in reverse order.
 Which XXX should replace the missing statement?

```
ListTraverseReverse(list) {
    XXX
}

printReverse(node) {
    if (node is not null) {
       printReverse(node----)next)
       print node
    }
}
```

- A. printReverse(list--->head)
- B. printReverse(list)
- C. printReverse(list--->head--->next)
- D. printReverse(list--->tail)

A B C D

Question 5. 5000 points

• The algorithm performs exactly 7+12N+3N² steps. What is the Big O of this algorithm?

A 3N²
B N³

C N²
 D 12N

Question 5. 5000 points

• The algorithm performs exactly 7+12N+3N² steps. What is the Big O of this algorithm?

Α	$3N^2$	
В	N^3	

The correct answer is C.

Checkpoint 1 reached!

You have 5,000 points

Which of the following is an AVL tree?

В

D

Which of the following is an AVL tree?

The correct answer is C.

Question 7. 10,000 points

Which of the following is TRUE?

- A. The cost of searching a binary search tree is O(log n) and that of an AVL tree is O(n)
- B. The cost of searching a binary search tree is O(n) and that of an AVL tree is $O(\log n)$
- C. The cost of searching a binary search tree is O(log n) and that of an AVL tree is O(log n)
- D. The cost of searching a binary search tree is O(n) and that of an AVL tree is O(n)

А		С	
В		D	

•	Which	of the	e follo	wing	is	TRU	JE?
---	-------	--------	---------	------	----	-----	-----

- A. The cost of searching a binary search tree is O(log n) and that of an AVL tree is O(n)
- B. The cost of searching a binary search tree is O(n) and that of an AVL tree is $O(\log n)$
- C. The cost of searching a binary search tree is O(log n) and that of an AVL tree is O(log n)
- D. The cost of searching a binary search tree is O(n) and that of an AVL tree is O(n)

Α	С
В	D

The correct answer is B.

Question 8. 15,000 points

Which is an Abstract data type (ADT)?

A Linked List

B Stack

C Adjacency matrix

D None of the above

Question 8. 15,000 points

• Which is an Abstract data type (ADT)?

A Linked List

B Stack

C Adjacency matrix

D None of the above

The correct answer is B.

• What is the result of rebalancing the following AVL tree?

A C 4 2 2 7 8 D 4

A B C D

The correct answer is B.

• If the *binarySearch()* method is called to search a sorted array of 32 numbers, then at most _____ array numbers are compared against the search key.

A 5 B 32 C 4
D 6

Question 10. 50,000 points

• If the *binarySearch()* method is called to search a sorted array of 32 numbers, then at most _____ array numbers are compared against the search key.

A 6 B 32 C 4
D 5

The correct answer is D.

Checkpoint 2 reached!

You have 50,000 points

Question 11. 75,000 points

 Which XXX completes the append() method in the Java LinkedList class for a singly-linked list?

```
public void append(Node newNode) {
   if (head == null) {
      head = newNode;
      tail = newNode;
   }
   else {
      XXX
      tail = newNode;
   }
}
```

```
A. head.next = newNode;
B. head = newNode;
C. tail.next = newNode;
D. head = tail;
```

A B C D

Question 11. 75,000 points

• Which XXX completes the *append*() method in the Java LinkedList class for a singly-linked list?

```
public void append(Node newNode) {
   if (head == null) {
     head = newNode;
     tail = newNode;
   }
   else {
     XXX
     tail = newNode;
   }
}
```

```
A. head.next = newNode;
B. head = newNode;
C. tail.next = newNode;
D. head = tail;
```

Α			
В			

C D • What is the height of a BST built by inserting nodes in the order 12, 24, 23, 48, 47?

A 4
B 3

C 1
D 2

• What is the height of a BST built by inserting nodes in the order 12, 24, 23, 48, 47?

A 4
B 3

C 1
D 2

The correct answer is B.

Question 13. 250,000 points

• Identify the AVL tree which results after insertion of node 9 into the following tree:

С	
D	

Question 13. 250,000 points

• Identify the AVL tree which results after insertion of node 9 into the following tree:

В

	С
	D

The correct answer is B.

Question 14. 500,000 points

- The queue was implemented using a circular array.
- What is the condition XXX?

C D

Question 14. 500,000 points

- The queue was implemented using a circular array.
- What is the condition XXX?

A C D

The correct answer is C.

Question 15. One million points!

• Identify the rebalanced AVL tree after removing 60 from the following tree:

Question 15. One million points!

• Identify the rebalanced AVL tree after removing 60 from the following tree:

A	С
В	D

The correct answer is C.

Well done!

You are almost ready for the final exam