Who wants to be a millionaire
 Computer Scientist?

Preparation for the finals
Game 2

- Identify the code which does not run in time O(1)
A.
for $(i=0 ; i<10 ; i++)$
\quad sum += num2;

$$
\begin{aligned}
& \text { C. } \\
& \begin{array}{l}
i=0 ; \\
\text { while (} i \text { < listSize) }\{ \\
\text { sum = sum }+1 ; \\
\text { i++; } \\
\text { \} }
\end{array}
\end{aligned}
$$

B.
if $(x>y)$
return x;

D.

$$
\begin{aligned}
& \text { num = } \operatorname{arr}[i] ; \\
& \operatorname{arr}[i+1]=\text { num }+1 ;
\end{aligned}
$$

A
B

C	D
D	B

- Identify the code which does not run in time O(1)
A.
for ($i=0 ; i<10 ; i++$)
sum += num2;
C.
$i=0 ;$
while ($\mathrm{i}<$ listSize) $\{$
sum = sum +1 ;
i++;
\}
B.
if ($x>y$)
return x;
D.
num $=\operatorname{arr}[i] ;$
$\operatorname{arr}[i+1]=n u m+1 ;$

A
B

The correct answer is C.

- Which of the following is an example of constant time $\mathrm{O}(1)$?
A. Finding the minimum value of an array
B. Binary search
C. Accessing an element of an array
D. Bubble sort

D
-Which of the following is an example of constant time $O(1)$?
A. Finding the minimum value of an array
B. Binary search
C. Accessing an element of an array
D. Bubble sort

The correct answer is C .

- What is the complexity of heapsort?

A	$O(n)$
B	$O(n \log n)$

C	$O(\log n)$
D	$O\left(n^{2}\right)$

- What is the complexity of heapsort?

A	$O(n)$
B	$O(n \log n)$

C	$O(\log n)$
D	$O\left(n^{2}\right)$

The correct answer is B.

- ListTraverseReverse must print a linked list in reverse order. Which XXX should replace the missing statement?

```
ListTraverseReverse(list) {
    XXX
```

\} A. printReverse(list $\cdots \rightarrow$ head)
B. printReverse(list)
printReverse(node) \{
if (node is not null) \{
printReverse(node \cdots next)
print node
\}
\}

A
B

- ListTraverseReverse must print a linked list in reverse order. Which XXX should replace the missing statement?

```
ListTraverseReverse(list) {
    XXX
```

\} A. printReverse(list…head)
B. printReverse(list)
printReverse(node) \{
if (node is not null) \{
printReverse(node \cdots next)
print node
\}
\}

A
B

The correct answer is A .

- The algorithm performs exactly $7+12 \mathrm{~N}+3 \mathrm{~N}^{2}$ steps. What is the Big O of this algorithm?

$\begin{array}{ll}\text { C } & \mathrm{N}^{2} \\ \mathrm{D} & 12 \mathrm{~N}\end{array}$
- The algorithm performs exactly $7+12 \mathrm{~N}+3 \mathrm{~N}^{2}$ steps. What is the Big O of this algorithm?

A	$3 N^{2}$
B	N^{3}

C	N^{2}
D	12 N

The correct answer is C.

Checkpoint 1 reached!
You have 5,000 points

- Which of the following is an AVL tree?

C

D

A
B

- Which of the following is an AVL tree?
A

C

3

The correct answer is C .

- Which of the following is TRUE?
A. The cost of searching a binary search tree is $O(\log n)$ and that of an AVL tree is $\mathrm{O}(\mathrm{n})$
B. The cost of searching a binary search tree is $O(n)$ and that of an AVL tree is $\mathrm{O}(\log n)$
C. The cost of searching a binary search tree is $O(\log n)$ and that of an AVL tree is $\mathrm{O}(\log n)$
D. The cost of searching a binary search tree is $O(n)$ and that of an AVL tree is $\mathrm{O}(\mathrm{n})$

\square
- Which of the following is TRUE?
A. The cost of searching a binary search tree is $O(\log n)$ and that of an AVL tree is $\mathrm{O}(\mathrm{n})$
B. The cost of searching a binary search tree is $O(n)$ and that of an AVL tree is $\mathrm{O}(\log n)$
C. The cost of searching a binary search tree is $O(\log n)$ and that of an AVL tree is $\mathrm{O}(\log n)$
D. The cost of searching a binary search tree is $O(n)$ and that of an AVL tree is $\mathrm{O}(\mathrm{n})$

C
 D

The correct answer is B.

- Which is an Abstract data type (ADT)?

A	Linked List
B	Stack

C Adjacency matrix
 D None of the above

- Which is an Abstract data type (ADT)?

A	Linked List
B	Stack

C Adjacency matrix
 D None of the above

Question 9. 25,000 points

- What is the result of rebalancing the following AVL tree?

A

C

B

D

A
B

C
D

Question 9. 25,000 points

- What is the result of rebalancing the following AVL tree?

A

C

B

D

\square
C
D
The correct answer is B.

- If the binarySearch() method is called to search a sorted array of 32 numbers, then at most \qquad array numbers are compared against the search key.

- If the binarySearch() method is called to search a sorted array of 32 numbers, then at most ____ array numbers are compared against the search key.

A	6
B	32

> | C | 4 |
| :--- | :--- |
| D | 5 |

The correct answer is D.

Checkpoint 2 reached!

You have 50,000 points

- Which XXX completes the append() method in the Java LinkedList class for a singly-linked list?

```
public void append(Node newNode) {
    if (head == null) {
        head = newNode;
        tail = newNode;
    }
    else {
        XXX
        tail = newNode;
    }
}
A. head.next = newNode;
B. head = newNode;
C. tail.next = newNode;
D. head = tail;
\}
```

```,
```


A
B

C \square

- Which XXX completes the append() method in the Java LinkedList class for a singly-linked list?

```
public void append(Node newNode) {
    if (head == null) {
        head = newNode;
        tail = newNode;
    }
    else {
        XxX
        tail = newNode;
    }
}
```

A
B

C
The correct answer is C.

- What is the height of a BST built by inserting nodes in the order $12,24,23,48,47$?

A	4
B	3

C	1
D	2

- What is the height of a BST built by inserting nodes in the order $12,24,23,48,47$?

A	4
B	3

C	1
D	2

The correct answer is B.

- Identify the AVL tree which results after insertion of node 9 into the following tree:

C

A
B

C
D

- Identify the AVL tree which results after insertion of node 9 into the following tree:

C

B

D

The correct answer is B.

- The queue was implemented using a circular array.
- What is the condition XXX?

```
enqueue(element, Array A, read, write)
    if XXX
        print ("Queue is full")
        return
    A[write] = element
    write = (write+1) % A.length
    A. write == read
    B. write == (read + 1) % A.length
    C. write == (read - 1) % A.length
    D. write == read - 1
```

A
B

C
D

- The queue was implemented using a circular array.
- What is the condition XXX?

```
enqueue(element, Array A, read, write)
    if XXX
        print ("Queue is full")
        return
    A[write] = element
    write = (write+1) % A.length
    A. write == read
    B. write == (read + 1) % A.length
    C. write == (read - 1) % A.length
    D. write == read - 1
```

A
B

Question 15. One million points!

- Identify the rebalanced AVL tree after removing 60 from the following tree:

A

B
C

D

Question 15. One million points!

- Identify the rebalanced AVL tree after removing 60 from the following tree:

A

C

B

D

A	C B
D	

The correct answer is C.

Well done!

You are almost ready for the final exam

