Algorithms on Strings, Trees, and Sequences

Introduction

by Marina Barsky
Strings are natural groupings of symbols into sequences, where the order has a special significance.

bad salad \neq sad ballad

Symbols: a b d l s
The course is about:

- String Algorithms (pattern matching, indexing, grouping, prediction): ideas, pseudocode, complexity
- Strings of interest are long and not broken into tokens (words)
- Trees: derived from strings

The area is called **Stringology**
The goal:

• To become familiar with the **problems** of modern Stringology
• To be able to identify which of these problems are efficiently **computable**
• Acquire **algorithmic tools** to solve these problems

Required Background:

• Algorithms
• Data structures
• Probability
Deliverables

• Assignments – 40 %
• Class work* – 30 %
• Final Project **– 30 %

* Consists of:
• In-class quizzes – to monitor comprehension
• In-class activities – to learn how to communicate your ideas

** Term paper or implementation
Long strings

Some texts

不貨心其知無不其
尚使不腹無為盈紛
賢民亂弱欲則淵和
使不是其使無兮其
民為以志夫不似光
不盜聖強智治萬同
爭不人其者道物其
不見之骨不沖之塵
貴可治常敢而宗湛
難欲其使為用挫兮
得使心民也之其似
之民實無為或解或

Tao Te Ching by Lao Tzu

Music scales

Saint-Saëns, Camille (1835-1921), Carnaval des Animaux, Orch. & 2 Pfts., Aquarium

Beethoven, Ludwig Van (1770-1827), Für Elise, Pft.

ED#ED#EAED#EFDC#DECHCDH (S-S)
ED#ED#EHDACEAHEG#C (B)

Information Retrieval

Collection of documents:
- mouse eats cheese
- cat eats mouse
- snake eats mouse

Query: who eats mouse?

Strings of words

Time series

SAX - Symbolic Aggregate approximation (by Eamon Keough, 2001)
Very long strings

Sequences of molecules in different biological polymers: DNA, RNA, proteins

Digitalization of the molecular code → new type of data:

- no clear separation into tokens
- large token size (30,000 and more)
- long “texts” (247 MB in chromosome I)
- virtually unlimited number of different substrings (2x10^{17} in Human genome)

Human genome: 3GB
Roundworm genome: 97 MB
Corn genome: 2.5 GB
Amoeba Dubia: 670 GB

more
Input Dataset:
20 TB of short DNA reads from 232 individuals

Experiment with large strings:
https://barsky.ca/marina/UTOR/experiments/bio_example/index.html
Molecular Biology:

• Describes living things in terms of chemical matter (molecules) and chemical and physical mechanisms
• Studies macromolecules – DNA, RNA, protein – and the mechanisms of their interaction
Bioinformatics:

• Applies concepts of Informatics and Computer Science to the field of Molecular Biology – to extract new knowledge from the information embedded in genetic code
Bioinformatics: assumptions

Similar sequences – similar function

Similar function – partly similar sequences

If function is unknown – look at similar sequences with known functions

If same function – look at similar substrings which may be responsible for it
Protocol of converting a biological problem into CS problem

1. Biological question (find similar sequences)
2. Formalization (how to measure similarity)
3. Design an efficient algorithm to solve the formalized problem
4. Model + learning – learn parameters of an algorithm from real data
5. Evaluation of results – distinguish (statistically) significant results from artifacts
6. Presentation of the results
Example 1: find similar sequence

• Input:
 – Query: sequence of DNA bases: AACCCTTTAG
 – The set of sequences of known genes (with their functions):
 ACCTAG
 AGCCCGTA
 AAGCCCGCTTA

• Question: which one is the most similar to the query sequence?
Which pair is most similar?

1

- AACCCTTTAG
- ACCTAG

2

- AACCCTTTAG
- AGCCCCGTAA

3

- AACCCTTTAG
- AAGCCCGCTTTA
Example 2: evolutionary tree

- Input: four DNA sequences taken from four species.

AAG AAA AGA GGA
Following protocol

1. Biological question: which evolutionary tree *best* explains these sequences?
2. Formalization: what is the metric for *the best* tree?

Let it be *the parsimony principle*
Parsimony principle

• In science, *parsimony* is preference for the least complex explanation. This is regarded as good when judging hypotheses.

• Occam's razor also states the "principle of parsimony": *entia non sunt multiplicanda praeter necessitatem*, is the principle that "entities must not be multiplied beyond necessity": the simplest explanation or strategy tends to be the best one.

• Under maximum parsimony, *the preferred phylogenetic tree is the tree that requires the smallest number of evolutionary changes*.
Many possible trees

Tree 1

Tree 2

What tree is more parsimonious?
Next steps

3. Efficient algorithm: how can we compute the best tree efficiently?

4. Adjusting parameters from the data: A is more likely to be replaced by G or by T?

5. Significance: is the best tree found significantly (statistically) better than others?

6. Present results as a tree

The main question remains: does the tree make biological sense?
We will discuss solutions to the following sample problems

- Sequence comparison
- Pattern discovery
- Gene finding
- Sequence-based evolution
Algorithmic Tools: outline

• Discrete algorithms:
 – Combinatorial pattern matching
 – String indexing
 – Dynamic programming

• Probabilistic models:
 – Hidden Markov Models
 – Maximum likelihood
 – Bayesian inference

• Hard problems:
 – Heuristics
 – Approximation algorithms
‘Strings’ of life

- DNA
- RNA
- Proteins