
Algorithms for multiple
sequence alignment

Lecture 6.1

https://phylo.cs.mcgill.ca/play.php

https://phylo.cs.mcgill.ca/play.php

Motivation

• Comparing multiple strings is more than technical exercise –
it is a critical cutting-edge tool for extracting important faint
commonalities from a set of strings

• We can reveal critical conserved motifs, common 2D and 3D
structures which give a clue to a common biological functions
(HIV drug)

Arthur Lesk: “One or two homologous sequences whisper.
A full multiple alignment shouts out loud.”

Multiple string comparison
vs. 2-string comparison

• When we are looking for sequence similar to a given
sequence, performing the pairwise alignment, we try to
discover a new biological relationship based on the fact that
the two sequences are similar

• When we are performing multiple alignment, the input
sequences may not be similar, but they are known to have a
similar biological function or shape, so we are looking for
the similar regions to deduce what is responsible for their
common biological function

Example 1: Structure prediction

• For proteins with the
similar shape or function,
compute a multiple
alignment and find what
regions are conserved
between all of them.

• These regions must play
important role in defining
their common 3D structure
(function)

Example 2: Molecular evolution

• Inferring evolutionary relationships between species

S1 A - X - Z

S2 A - X - Z

S3 A - X X Z

S4 A - Y - Z

S5 A Y X X Z S5

S4S3

S2

Insert X

S1

Insert Y

X → Y

Multiple Strings Comparison:
inexact matching

• The mutation rate between organisms is high.

• Up to some extent, the changes in DNA do not impact the
functionality of the molecule, so all these similar regions we
want to find are inexact matches

https://phylo.cs.mcgill.ca/play.php

https://en.wikipedia.org/wiki/Phylo_(video_game)

https://phylo.cs.mcgill.ca/play.php
https://en.wikipedia.org/wiki/Phylo_(video_game)

Global Multiple Sequence Alignment
(MSA)

• A global multiple alignment
for k>2 strings is a table with
k rows

• The spaces are inserted in
chosen positions of any of the
aligned strings, then each
string is arrayed in a separate
row such that each character
and space is in a unique
column

S1 A - X - Z

S2 A - X - Z

S3 A - X X Z

S4 A - Y - Z

S5 A Y X X Z

How to score MSA

• Objective score functions:

• Sum of pairs

• Consensus

• Consistency with a tree

• Subjective score function:

• have an expert to look at the alignment

The sum-of-pairs (SP) score

• The SP score is the sum of scores of pairwise global
alignments for each pair of strings in the MSA

• Example: suppose the pairwise alignment scores are edit
distances

S1 A X - Z

S2 A X - Z

S3 A X X Z

0
1

1

Total SP-score (edit distance) is 2

The consensus score

S1 A - X - Z

S2 A - X - Z

S3 A - X X Z

S4 A - Y - Z

S5 A Y X X Z

S* A - Y - Z

0 1 4 2 0

Consensus
string

Consensus score (MSA, S*)=Σ all columns j Σ1≤i ≤ k score(Si[j],S*[j])

Consensus score: 7

Multiple alignment problem

• There is no known efficient method for solving this problem
for a consensus score, so we try to solve it for an SP-score

Given a set S of k strings and an objective scoring
function, compute multiple alignment with an optimal
score (minimized or maximized)

MSA with an SP-score objective function:
Dynamic Programming solution

• The solution is analogous to computing an optimal path in a
multi-dimensional grid, exactly as for a pairwise alignment in
a 2-dimensional grid.

S1

S2

S3

For k=3, we need to compute an optimal
value for each of N3 cells, each time choosing
the best from 23-1 points

Matching characters of all 3
strings

Insertion in S1

Deletion in S1

The complexity of the DP solution

O(Nk*2k)=O(Nk)

The problem is NP-complete (See recent paper here)

https://drive.google.com/file/d/1i2Aq_e-LutmgdWypIMhin4_VWB_HXk0r/view?usp=sharing

Heuristic solution: Iterative alignment

• We have 5 strings:
S1. AXZ
S2. AYZ
S3. AXXZ
S4. AYXXZ
S5. AXZ

• Let us try to add them to an alignment iteratively:

Iterative alignment – align S2 to S1

S1. AXZ

S2. AYZ

S3. AXXZ

S4. AYXXZ

S5. AXZ

S1 A X Z

S2 A Y Z

M (S1,S2)

Iterative alignment – adding S3 to M(S1,S2)

S1. AXZ

S2. AYZ

S3. AXXZ

S4. AYXXZ

S5. AXZ

S1 A X - Z

S2 A Y - Z

S3 A X X Z

M (S1,S2,S3)

Iterative alignment – adding S4 to
M(S1,S2,S3)

S1. AXZ

S2. AYZ

S3. AXXZ

S4. AYXXZ

S5. AXZ

S1 A - X - Z

S2 A - Y - Z

S3 A - X X Z

S4 A Y X X Z

S1 A X - - Z

S2 A Y - - Z

S3 A X - X Z

S4 A Y X X Z

or

Which one is better?

How many different
possibilities are for longer
strings?

Iterative alignment – result

S1. AXZ

S2. AYZ

S3. AXXZ

S4. AYXXZ

S5. AXZ

S1 A X - - Z

S2 A Y - - Z

S3 A X - X Z

S4 A Y X X Z

S5 A - X - Z

S2 S3 S4 S5

S1 1 1 3 3

S2 2 2 3

S3 2 3

S4 2

SP score (M)=22

How good is it comparing to an
optimal alignment?

How to choose the right order of
sequences?

SP-score (M): 22

An approximation algorithm for MSA with
an SP-score objective function: SP-star

• Practical methods use heuristics to find sub-optimal SP
alignment. Little is usually known about how much a
produced alignment deviates from the optimal SP alignment.

• A bounded-error approximation algorithm is an algorithm
which finds a sub-optimal solution, but which allows to
evaluate the difference between the computed solution and
the optimal solution

SP-star algorithm for MSA

• For this algorithm, the scoring distance must have the
following properties:

Property 1. D(S1, S1)=0 identity

Property 2. D(S1, S3) <= D(S1, S2) + D (S2, S3)

triangle inequality for strings

(the cost of transforming S1 into S3 is no more than
transforming S1 into S2 and then transforming S2 into S3)

Property 3. D(S1, S2)= D(S2, S1) symmetry

Edit Distance has these properties

Edit Distance: alternative definition

For each character or gap x in S1 and z in S2:

d(x,z)= 0 if x=z

1 if x!=z

Definition 1. Distance D(S1,S2)=∑i from 1 to L[d(S1[i], S2[j])]

Definition 2. Edit distance

ED(S1, S2)=min { D(S1, S2)}

Center Star tree: definitions

Definition 1. Given a set S of k strings, define a center string
Sc  S as a string that minimizes ∑Sj  S EDistance(Sc, Sj):

i ∑j from 1 to kEDistance(Si, Sj) >= ∑j from 1 to kEDistance(Sc, Sj)

Definition 2. Center start tree - a tree of k nodes with Sc as a
center and adjacent nodes – the remaining (k-1) strings of
the set.

Produce an alignment Mstar by optimally aligning each string
to a center string.

SP-tree algorithm –1/2

S1. AXZ

S2. AYZ

S3. AXXZ

S4. AYXXZ

S5. AXZ

S1 S2 S3 S4 S5

S1 0 1 1 2 0 4

S2 1 0 2 2 1 6

S3 1 2 0 1 1 5

S4 2 2 1 0 2 7

S5 0 1 1 2 0 4

We chose S1 to be a center string Sc

1

2
3

45

Computed in time O(K2N2)

Distances from each Si to all other strings

SP-start algorithm – 2/2

• Align each sequence to Sc according
to an edit distance between Sc and
every other string

S1 A - X - Z

S2 A - Y - Z

S3 A - X X Z

S4 A Y X X Z

S5 A - X - Z

S2 S3 S4 S5

S1 1 1 2 0

S2 2 3 1

S3 2 1

S4 2

S1. AXZ

S2. AYZ

S3. AXXZ

S4. AYXXZ

S5. AXZ

SP score (Mc)=15

Theorem 1.

SP score(Mc)/SP score (M*)<2
Proof (1/3)

For simplicity, let’s consider values in all cells of the pairwise

distance table. They are directly proportional to SP-score

(1). SP score (Mc)= ∑i=1
k ∑j=1

k ED(Si, Sj)

(2). ED(Si, Sj) <=ED(Si, Sc)+ED(Sc,Sj)

(triangle inequality)

(3). i ED(Si, Sc)=ED (Sc, Si) (symmetry)

(4). From (1) & (2) =>

SP score (Mc)<= ∑i=1
k ∑j=1

k [ED(Si, Sc)+ED(Sc,Sj)]=

= ∑i=1
k ∑j=1

k ED(Si, Sc)+ ∑i=1
k ∑j=1

k ED(Sc, Sj) =

=k ∑j=1
k ED(Si, Sc)+ k ∑j=1

k ED(Sc, Sj)}=

=2*k ∑j=1
k ED(Si, Sc)

S1 S2 S3 S4 S5

S1 0 1 1 2 0

S2 1 0 2 3 1

S3 1 2 0 2 1

S4 2 3 2 0 2

S5 0 1 1 2 0

SPScore (Mc)<= 2k ∑i=1
k ED(Si, Sc) (I)

Distance table for central star
algorithm: total score Mc

Theorem 1.

SP score(Mc)/SP score (M*)<2
Proof(2/3)

(5) SP score (M*)= ∑i=1
k ∑j=1

k D*(Si, Sj)

(6)  i ∑j=1
k D(Si, Sj)>= ∑j=1

k ED(Sc, Sj) (from the
choice of Sc to minimize this sum)

(7). From (5) and (6) =>
SP score (M*)>= k* ∑j=1

k ED(Sc, Sj)

and

1/ SP score (M*) <= k* ∑j=1
k ED(Sc, Sj)

1/ SP score (M*) <= ∑j=1
k ED(Sc, Sj) (II)

S1 S2 S3 S4 S5

S1 0 1 1 2 0

S2 1 0 2 2 1

S3 1 2 0 2 1

S4 2 2 2 0 2

S5 0 1 1 2 0

This is total distance table for
optimal (minimal) scores between
each pair – the alignment is
unknown. Let’s call this unknown
optimal alignment M*

Theorem 1.
SP score(Mc)/SP score (M*)<2
Proof (3/3)

(8). From (I) and (II) =>

SP score(Mc)/SP score (M*)<=2

For simplicity, we proved an upper bound which is not tight.

It can be shown that the tighter upper bound is 2(k-1)/k = 2 – 2/k.

Thus, the upper bound for k=3 is 4/3=1.33, for k=4 the upper bound is 1.5 and
for k=6 (a problem size considered to be too large for efficient DP solution
with strings of length 200) the bound is still only 1.67

How to use this approximation for a
better exact solution

• An approximate solution for the SP alignment can be used in
order to cut off the number of DP table cells to be computed

• If we estimated the total SP-score to be not more than D, we
can consider only the cells in the tunnel with radius not
more than D around the main diagonal of the multi-
dimensional DP table

MSA implementation:
The Carrillo-Lipman algorithm

• The around-the-main diagonal idea is used in the MSA algorithm and its
implementation

• It is able to optimally align (on a large server)
• 20 Phospholipase A2 sequences (approximately 130 residues),
• 14 Cytochrome C sequences (approximately 110 residues),
• 6 Aspartal proteases (approximately 350 residues),
• 8 Lipid binding proteins (approximately 480 residues) on our

supercomputers.

All of these problems approached the limits of the problems that can be
solved optimally by the MSA program, which can compute an optimal
multiple alignment for not more than 7 strings of length approximately
200 each

• There is no practical scalable solution to this problem

https://github.com/dcasella/carrillo-lipman

The meaning of MSA scores in terms of
relationships between sequences

• In the SP-score based alignment we try to minimize the total
number of edit operations between each pair – but that
does no mean that each sequence was transformed into
each other sequence by a series of these edit operations

• In the consensus-score based alignment we try to align all
sequences to their common ancestor –consensus sequence.
The problem is that we cannot find this consensus ancestor
by efficient computation

Multiple alignment consistent with a tree

• We optimize distance between more closely related sequences, as
follows from the phylogenetic tree for these sequences

• Given an evolutionary phylogenetic tree with a distinct string labeling
each leaf, a phylogenetic alignment is an assignment of one string to
each internal node

• Each edge represents some mutational history (a series of edit
operations), which transformed the ancestor string into its children

• The score of a phylogenetic alignment is the sum of scores of its
edges

• Consensus is a phylogenetic alignment to a star-tree

• The problem of constructing a phylogenetic alignment with a minimal
total score is NP-complete, and also – the tree topology should be
known in advance

	Slide 1: Algorithms for multiple sequence alignment
	Slide 2: Motivation
	Slide 3: Multiple string comparison vs. 2-string comparison
	Slide 4: Example 1: Structure prediction
	Slide 5: Example 2: Molecular evolution
	Slide 6: Multiple Strings Comparison: inexact matching
	Slide 7: Global Multiple Sequence Alignment (MSA)
	Slide 8: How to score MSA
	Slide 9: The sum-of-pairs (SP) score
	Slide 10: The consensus score
	Slide 11: Multiple alignment problem
	Slide 12: MSA with an SP-score objective function: Dynamic Programming solution
	Slide 13: The complexity of the DP solution
	Slide 14: Heuristic solution: Iterative alignment
	Slide 15: Iterative alignment – align S2 to S1
	Slide 16: Iterative alignment – adding S3 to M(S1,S2)
	Slide 17: Iterative alignment – adding S4 to M(S1,S2,S3)
	Slide 18: Iterative alignment – result
	Slide 19: An approximation algorithm for MSA with an SP-score objective function: SP-star
	Slide 20: SP-star algorithm for MSA
	Slide 21: Edit Distance: alternative definition
	Slide 22: Center Star tree: definitions
	Slide 23: SP-tree algorithm –1/2
	Slide 24: SP-start algorithm – 2/2
	Slide 25: Theorem 1. SP score(Mc)/SP score (M*)<2 Proof (1/3)
	Slide 26: Theorem 1. SP score(Mc)/SP score (M*)<2 Proof(2/3)
	Slide 27: Theorem 1. SP score(Mc)/SP score (M*)<2 Proof (3/3)
	Slide 28: How to use this approximation for a better exact solution
	Slide 29: MSA implementation: The Carrillo-Lipman algorithm
	Slide 30: The meaning of MSA scores in terms of relationships between sequences
	Slide 31: Multiple alignment consistent with a tree

