Introduction:
Strings that encode Life
An Historical Perspective

• … – 1900 Pre-Mendelian period
• 1900 – 1940 Pre-DNA period
• 1940 – 1990 DNA period
• 1990 – 2003 Genomic period
• 2003 – … Post-genomic era
Modern Biology

- Mechanism
- Cell theory
- Evolution
Technology: Manipulating DNA

- Restriction enzymes

![Diagram showing the action of restriction enzymes and methylases on DNA.](image)
Technology: Manipulating DNA

- **Restriction enzymes**
 - Can cut DNA duplex at specific sites (palindrome sequence).
 - Do not discriminate between DNA from different organisms.
 - A natural part of the bacterial defense system.
 - High specificity for their recognition site means that DNA will be cut reproducibly into defined fragments.

![Restriction Enzyme Diagram](image)
Restriction enzymes

- Produce sticky ends of a single-stranded DNA which can base-pair (anneal) with any complementary single-stranded DNA sequence
Technology: Manipulating DNA

• Restriction enzymes
• Cloning vectors – replicating systems in addition to chromosomes:
 – Plasmids and BACs in Prokaryotes
 – Artificial chromosomes in Yeasts (Eukaryotes), YACs
 – Detailed restriction map of cloning vector
 – Marker – antibiotic resistance
Technology: Manipulating DNA

- Restriction enzymes
- Cloning vectors
- Reverse transcriptase
 - makes transcription from RNA to DNA (retroviruses – HIV)
 - we can take a mRNA (unstable) of any expressed gene and transcribe it into the DNA sequence (stable, double-stranded)
 - this DNA is called cDNA
Technology: Manipulating DNA

- Restriction enzymes
- Cloning vectors
- Reverse transcriptase
- Recombinant DNA
 - Self-replicating system containing artificially introduced gene
 - Example: production of insulin
 - Future: production of spider silk, biodegradation of waste
Technology: cDNA libraries

- Produce cDNA of a gene
- Clone this DNA in BAC, YAC or plasmid
- The amount of DNA sequence can be increased using Polymerase Chain Reaction (PCR)
Technology: electrophoresis

- Gel electrophoresis – determine length of DNA fragments

The length of DNA molecules is decreasing – smaller molecules run faster in a porous gel.
Sequencing

• Enzymic chain termination method
 – 4 different reaction tubes
 – Primer – sequence complementary to the start of the sequenced DNA
 – Mix of A,C,G,T radioactively labeled nucleotides
 – Small amount of dideoxynucleotides – when incorporated, no further chain growth

![Diagram of sequencing process]
Sequencing

- The resulting DNAs from 4 tubes are loaded into 4 adjacent lines of the gel
- We can read the sequence from gel
- The sequence is read bottom up – from shorter to longer
- Process is automated
- Only up to 1000 nucleotides can be sequenced at a time
- We can determine sequence of all cDNAs in a cloning library
Sequencing genomes

- 1985 – proposal to sequence entire Human genome. Financed by US Department of Energy (DOE), lead by Watson, at first, then by Francis Collins
 - "The fear is not big science so much as bad science," said Botstein, “the DOE's proposal is a scheme for unemployed bombmakers."
- First, model organisms were sequenced
 - E. coli (bacteria)
 - Drosophila (fruit fly)
 - C. elegans (round worm)
The scientific value seemed dubious. Although many biologists agreed that maps of the chromosomes would be useful for finding genes, what good would come from deciphering every A, T, G, and C, especially since most of them were "junk" that did not code for genes.
Human Genome Project

• 1985-the project initiated by Charles DeLisi, head of the department of energy (DoE) in the USA
• 1990-launched with the intention to be completed within 15 years and with a 3 billion dollar budget
• 1996-”Bermuda principles” – formalized the release of sequence data into public databases
• 1998-Craig Venter forms Celera company and promises to finish sequencing in 3 years with an ambitious “whole genome shotgun” approach
• 1999-the public project responds to Venter’s challenge and changes their target completion time
• December 1999-the first human chromosome sequence (22) published
• June 2000 – working draft announced
• February 2001 – the first draft published in Nature and Science magazines
The Human Genome Sequence

- 3×10^9 basepairs (30 times larger than fruit fly and round worm – both around 10^8 basepairs), 250 times larger than Yeast genome
- Protein coding regions not more than 3%
- Around 46% of the remaining DNA – repeating sequences
- The rest contains promoters and other regulatory sequences
Genome Sequence Assembly
Genomic Assembly algorithms

• Greedy assemblers
 The assembler greedily joins together the reads that are most similar to each other.

• Overlap-layout consensus
 The relationships between the reads can be represented as a graph, where the nodes represent the reads and an edge connects two nodes if the corresponding reads overlap.
Find a string whose all substrings of length 3 are:

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC.
All Substrings of Length 3

DISCRETE

DIS
ISC
SCR
CRE
RET
ETE
All Substrings of Length 3

Every two neighbor 3-substrings have a common part of length 2, called an overlap.
Computing a Permutation

• **Algorithmic problem**: Find a string whose all substrings of length 3 are AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

• Hence, we need to order these 3-substrings such that the overlap between any two consecutive substrings is equal to 2
Nodes are substrings: short DNA sequence reads

Overlap Graph
There is an edge from s_1 to s_2 if $s_1[2:3]=s_2[1:2]$
Hamiltonian path in the Overlap Graph
Hamiltonian path in the Overlap Graph

TCAG ...
We solved Genome Assembly Problem!

- We modeled the problem of genome assembly as Hamiltonian path problem in the overlap graph!
We solved Genome Assembly Problem!

• We modeled the problem of genome assembly as Hamiltonian path problem in the overlap graph!

• But unfortunately we don’t have efficient algorithms for solving the Hamiltonian path problem!

• The approach is useless for the case when there are thousands or millions of input strings
Computational biology

• The *bioinformatics* was born
 – the creation and advancement of databases, algorithms, computational and statistical techniques, and theory to solve formal and practical problems arising from the management and analysis of large-scale biological sequences.
Recall: Eulerian path problem

Is there a path which visits every edge of the graph exactly once?

Seven bridges of Königsberg

Modeled as Graph

Leonhard Euler
1707 - 1783
Seven bridges of Königsberg

Is there an Eulerian Path through these seven bridges?

Königsberg, 17-th century
Five Bridges of Kaliningrad

Is there an Eulerian Path through these five bridges?

Königsberg (Kaliningrad), 21-th century
Five Bridges of Kaliningrad

B and D have **odd** degree

If there exists an Eulerian path, B and D must be START and FINISH

Königsberg (Kaliningrad), 21-th century
Which graph is an Eulerian graph (contains Eulerian path)?

A. Graph A
B. Graph B
C. Both A and B
D. Neither A nor B
The theorem about the existence of an Eulerian path can be transformed into an efficient algorithm for constructing it.
Eulerian Path Algorithm

If there are no odd-degree vertices, start anywhere
If there are 2 odd-degree vertices, start at one of them.

Out of the current vertex follow any edge
If you have a choice between a bridge and a non-bridge, always choose the non-bridge: “don’t burn bridges“ so that you can come back to a vertex and traverse remaining edges
Remove each followed edge (or mark as processed)

Stop when you run out of edges
Example

Two vertices with odd degree – choose any of them to start
Example: where to go first?

Eulerian Path:

Do not go there: (2,3) is a bridge

Eulerian Path:
Example: step 1

Eulerian Path: (2,0)

Move along (2,0) and then delete edge (2,0)
Example: step 2

Eulerian Path: (2,0), (0,1)

Move along (0,1) and then delete edge (0,1)
Example: step 3

Eulerian Path: (2,0), (0,1), (1,2)
Example: step 4

Eulerian Path: (2,0), (0,1), (1,2), (2,3)

Move along (2,3)
Example: the end

Eulerian Path: (2,0), (0,1), (1,2), (2,3)
Example: the end

Eulerian Path: (2,0), (0,1), (1,2), (2,3)
Genome Assembly problem: still unsolved

Find a string whose all substrings of length 3 are:

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC.
Different approach
(De Bruijn; Pevzner, Tang, Waterman)

State-of-the-art genome assemblers

- In the overlap graph, each node corresponds to the input substring
- Let’s instead represent each edge by the same substring, broken into 2 nodes (overlaps):
 - E.g., represent the string CAT as an edge
 CA → AT
De Bruijn Graph

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC
De Bruijn Graph
AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

now, we need to find an order of edges
De Bruijn Graph

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

that is, an Eulerian path
De Bruijn Graph

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC
De Bruijn Graph

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

TCCCA
De Bruijn Graph

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

TCCAG
Imagine that you are given a large set of 3-letter strings which represent all possible different substrings of the large “genome” string:

him, eno, ome, chi, nom, mpg, pge, gen, imp

Recover the whole “genome” sequence by building a graph model of the problem.

Draw the graph and explain which algorithm you used on this model to recover the original “genome”