
Pattern search.
Algorithm by
Knuth, Morris, Pratt (KMP)

Lecture 2
by Marina Barsky

KMP demo tool

https://cs.oberlin.edu/~mbarsky/classes/cs-381/lectures/kmp_demo/

“In a very real sense, molecular biology is all

about sequences. It tries to reduce complex

biochemical phenomena to interaction

between defined sequences”

“The ultimate rationale behind all purposeful

structures and behavior of living things is

embodied in the sequence of residues of

nascent polypeptide chains . . . In a real

sense it is at this level of organization that

the secret of life (if there is one) is to be

found.”

We use pattern search for:

◼ Finding overlaps during sequence assembly

◼ Finding unique sequences used to map the positions of

the fragments in the genome

◼ Finding promoter sequences that signal beginning of a

coding region

◼ Subroutine for more complex string algorithms

Useful definitions: string and substring

■ A string S of length N is an ordered list of N elements written
contiguously from left to right

■ The elements are called symbols or characters
■ S[i…j] is a contiguous substring of S starting at position i and

ending at position j of S

Useful definitions: prefix and suffix

▪S[i…j] is a contiguous substring of S starting at position i and
ending at position j of S

▪S[1…j] is a prefix of S starting at position 1 and ending at position j
▪S[i…N] is a suffix of S starting at position i and running till the last

character of S

What is Suffix 4?

What is Suffix 1?

b a n a n a

1 2 3 4 5 6

Useful definitions: prefix and suffix

▪S[i…j] is a contiguous substring of S starting at position i and
ending at position j of S

▪S[1…j] is a prefix of S starting at position 1 and ending at position j
▪S[i…N] is a suffix of S starting at position i and running till N

b a n a n a

1 2 3 4 5 6

What is Prefix 4?

What is Prefix 1?

What is Prefix 0?

Useful definitions: proper substrings

■ S[1…j] is a prefix of S starting at position 1 and ending at
position j

■ S[i…N] is a suffix of S starting at position i and running till N

■ S[i…j] is an empty string if i>j

■ A proper substring, prefix, suffix of S is respectively a substring,
prefix, suffix that is neither the entire string S nor the empty
string

Useful definitions: proper substrings

■ S[1…j] is a prefix of S starting at position 1 and ending at position j

■ S[i…N] is a suffix of S starting at position i and running till N

■ A proper substring, prefix, suffix of S is respectively a substring, prefix,
suffix that is neither the entire string S nor the empty string

b a n a n a

1 2 3 4 5 6

Is Prefix 1 a proper prefix?

Is Prefix 0 a proper prefix?

Is Suffix 1 a proper suffix?

Pattern matching problem

Given a string P (of length M) called the pattern and a
longer string T (of length N) called the text, find all
occurrences, if any, of pattern P in text T

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Report 1

Naïve method – what next?

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Start from 2

Naïve method – what next?

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Start from 3

Naïve method – what next?

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Start from 4

Naïve method – continue…

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Report 4

Naïve method – time complexity

■ How many character comparisons in total?

■ How did you compute the value?

■ Compute how many comparisons are required for
T=aaaaaaaaaa (N=10) and P=aaa (M=3)

➔ In the worst case, we start from each position i of T (there are
N such positions), and, for each i, we compare M characters

➔ For T=aaaaaaaaaa (N=10) and P=aaa (M=3) there are exactly
24 comparisons, M*(N-M+1)

➔ The time complexity of the naïve algorithm is O(MN)

Can we do better? Motivation

■ Let the length of the pattern M=100

■ A standard fetching time from sequential RAM is 358 MB
values per second (ref)

■ If we have 10 genomic sequences 3GB each, then we need to
search through the text of a total size N=3*1010, which can be
sequentially accessed in approximately 3*108 values per
second. We will spend 100 seconds on a linear time algorithm,
but for the naïve O(MN) algorithm we need to multiply it by
the value of M, which can be as large as 100!

■ We want the pattern search algorithm to perform at least in
time O(N)

http://cacm.acm.org/magazines/2009/8/34493-the-pathologies-of-big-data/fulltext

Dream goal: each character of T is
examined at most once

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

t citci Less than M

characters remain

Is this algorithm correct?

Incorrect algorithm

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

t citci Less than M

characters remain

No, we missed an occurrence of P starting at position 4

t citci

Shifting heuristics

▪ If we failed to align the next character P[j] of P with the
current character of T, start the next comparison from the
next occurrence of a character P[1] to the left from j

▪ How do we know the position in T of such a character?

Shifting heuristics

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

t citci

t citci

t citci

Seems good!

Shifting heuristics

■ What about our worst-case example: T=aaaaaaaaaa (N=10)
and P=aaa (M=3)?

KMP idea

▪ When we have aligned the prefix of P with k characters of T,
we know what these first k characters of T are (they are
equal to those of the prefix P[1…k] of P).

▪ From this information we can deduce the place where to start
the next comparison.

KMP intuition

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

We have aligned 6 characters

The next occurrence of a pattern has to start

with tic and we know that the last characters of a

match were tic, since the suffix of P starting at

position 4 is equal to a prefix of P of length 3

KMP intuition

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

Therefore we can set a start of the next comparison to 3 positions backwards from

the current position, and we don’t need to compare the first 3 characters again,

since we know that they match

Thus, we can continue the comparison from the next character of P (and T).

In this case, we never go back to look at characters of T that were already

compared.

t citci

KMP intuition – overlap function for P

In order to know where to position the start of the next comparison, we need to

know the values of an overlap function for P, namely:

For each position j in P, the maximal length of a substring which is at the same

time a proper prefix of P and a proper suffix of substring P[1, j].

Before we start the search, we need to compute an overlap function for P – we

need to preprocess pattern P.

t citci

654321

citcit

KMP intuition – overlap function for P

For j=1, OF=0 (t is not a proper suffix of a substring t, it is the entire t!)

t citci

654321

cct

0

KMP intuition – overlap function for P

For j=2, OF=0 (the only proper suffix of ti, the suffix i, does not have overlap

with any prefix of ti)

t citci

654321

cct

00

i

i

KMP intuition – overlap function for P

For j=3, OF=0 (suffixes ic, c do not have an overlap)

t citci

654321

cct

000

i

KMP intuition – overlap function for P

For j=4, OF=1 (t is a proper suffix of a substring tict, and the prefix of P)

t citci

654321

cct

1000

i tt

KMP intuition – overlap function for P

For j=5, OF=2 (ti is a proper suffix of a substring ticti, and the prefix of P)

t citci

654321

cct

21000

i tct i

KMP intuition – overlap function for P

For j=6, OF=3 (tic is a proper suffix of a substring tictic, and the prefix of P)

t citci

654321

cct

321000

i

c

i
tct i c

Assume, for now, that the OF values for P are pre-computed

KMP search: match found

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Report 1

321000

j=7

Consult OF(6)=3 it tells how many positions backward

from i the next comparison starts: k=i-OF(j-1)

i=7

KMP search: overlap 3

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

No need to

compare these 3

characters, we

know that they

match – we just

compared them

321000 Next alignment starts at: k=4

KMP search: overlap 3

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Report 4

Consult OF(6)=3 it tells how many positions backward

from i the next comparison starts: k=i-OF(j-1) = 10-3=7

i=10

j=7

321000

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Continue comparing T[10] and P[4]321000

KMP search: overlap 1

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

T[11] and P[5] do not match. Consult OF(4)=1. next potential

match can start at i-OF(j-1)=10, and the first character is already
matched.

j=5

i=11

321000

KMP search: overlap 0

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Here we only matched with the first character of P, the

value OF(1)=0, thus we don’t use any info to shift i. We

reset pattern position j to 1, without changing i.

j=2

i=11

321000

KMP search: no matches at all

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

P[1] does not match T[11]. We did not match any

characters, so we advance i and reset j, starting a new

alignment at T[12] with P[1] (as we would do without KMP)

j=1

i=11

321000

KMP search: overlap 0

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

etc…

i=12

654321

citcit

321000

j=1

KMP– in “English”

Setup pointers i and j to point to the current character of T and P respectively

DO

Advance both pointers as long as T[i] matches P[j]

If you advanced all M characters (j=M)

Report occurrence of P in T (at position i-M)

Use an overlap function OF(M) to compute pattern shift

If j≠ M and the next characters T[i] and P[j] do not match:

See how many characters matched - 3 cases:

1. matched 0 characters: advance i, restart j=1 (as we would do without KMP)

2. OF(j-1) = 0. Previous match does not help with alignment,

so we need to start comparing P[1] with T[i] without advancing i

3. OF(j-1)>0. Compute pattern shift and continue comparing from the next j

UNTIL i < N

T:= 'tictictictactictictic'

P:= 'tictic'

N:= len(T)

M:= len(P)

OF:= [0, 0, 0, 1, 2, 3]

manually precomputed overlap

function for P

KMP– code

Setup pointers i and j to point to the current character of T and P

DO

Advance both pointers as long as T[i] matches P[j]

If you advanced all M characters (j=M)

Report occurrence of P in T (at position i-M)

Use an overlap function OF(M) to compute pattern

shift

If j≠ M and the next characters T[i] and P[j] do not match:

See how many characters matched - 3 cases:

1. matched 0 characters: advance i, restart j=0

(as we would do without KMP)

2. OF(j-1) = 0. Previous match is not useful

so we start comparing P[0] with T[i]

without advancing i

3. OF(j-1)>0. Compute pattern shift and

continue comparing from the next j

and the same i

UNTIL i < N

T:= 'tictictictactictictic'

P:= 'tictic'

N:= len(T)

M:= len(P)

OF:= [0, 0, 0, 1, 2, 3]

manually precomputed overlap

function for P

i = 0 # current position to compare character in T
j = 0 # current position to compare character in P

while i < N:
loop while characters match
while j < M and i < N and T[i] == P[j]:

i = i + 1
j = j + 1

if j == M:
matches.append((i - M))

if j == 0:
i = i + 1

else:
j = of_list[j - 1]

return matches

KMP algorithm: time complexity

Theorem: The number of character comparisons in the KMP
algorithm is at most 2N

Proof

❑ Divide the algorithm into compare/shift parts. Let a single

phase include the comparisons done between 2 successive

shifts. We see that during 2 successive shifts at most 2

comparisons are done for each character of T.

❑ Since pattern is never shifted to the left, the total number of

character comparisons is bounded by N+s, where s is the

total number of shifts. But s<N, since after N shifts the right

end of P is certainly to the right of the right end of T, so the

total number of comparisons done is bounded by 2N

Worst-case example – iterations1,2

1 1 1 1 1

a a a a b a a a a a

a a a a a

We have aligned pattern P, by performing so far 1 character comparison for

each of 5 characters of P

Now we need to restart the comparison from the position 2 of T

1 1 1 1 2

a a a a b a a a a a

a a a a a

Counting number
of times the
character is
accessed

Worst-case example – iteration 3

1 1 1 1 2

a a a a b a a a a a

a a a a a

We have compared character b of T already 2 times

Next we start by aligning pattern starting at position 3 of T

1 1 1 1 3

a a a a b a a a a a

a a a a a

Worst-case example – iteration 4

1 1 1 1 4

a a a a b a a a a a

a a a a a

Worst-case example – iteration 5

1 1 1 1 5

a a a a b a a a a a

a a a a a

For now, we have compared character b of T 5 times (as the length of the

pattern), but during this comparison we have shifted the left end of P 5

positions forward. Since we did not compare anymore any character to

the left from b, we did in total not more than 5*2 comparisons in order to

process the 5 first characters of T.

This is true in general: the total number of character comparisons in KMP
is bounded by 2N

Readings

■ http://en.wikipedia.org/wiki/Knuth-Morris-

Pratt_algorithm

■ http://www.ics.uci.edu/~eppstein/161/960227. html

■ Dan Gusfield. Algorithms on strings, trees, and

sequences. Computer science and computational

biology. Cambridge University press, 1999. Chapter 2.3

http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://www.ics.uci.edu/~eppstein/161/960227.html
https://drive.google.com/file/d/1rxK5NUbpEBFdj2ma57SRzt_4tJLUPuBd/view?usp=sharing

	Slide 1: Pattern search. Algorithm by Knuth, Morris, Pratt (KMP)
	Slide 2
	Slide 3
	Slide 4: We use pattern search for:
	Slide 5: Useful definitions: string and substring
	Slide 6: Useful definitions: prefix and suffix
	Slide 7: Useful definitions: prefix and suffix
	Slide 8: Useful definitions: proper substrings
	Slide 9: Useful definitions: proper substrings
	Slide 10: Pattern matching problem
	Slide 11: Naïve exhaustive search
	Slide 12: Naïve exhaustive search
	Slide 13: Naïve exhaustive search
	Slide 14: Naïve exhaustive search
	Slide 15: Naïve exhaustive search
	Slide 16: Naïve exhaustive search
	Slide 17: Naïve exhaustive search
	Slide 18: Naïve method – what next?
	Slide 19: Naïve method – what next?
	Slide 20: Naïve method – what next?
	Slide 21: Naïve method – continue…
	Slide 22: Naïve method – time complexity
	Slide 23: Can we do better? Motivation
	Slide 24: Dream goal: each character of T is examined at most once
	Slide 25: Incorrect algorithm
	Slide 26: Shifting heuristics
	Slide 27: Shifting heuristics
	Slide 28: Shifting heuristics
	Slide 29: KMP idea
	Slide 30: KMP intuition
	Slide 31: KMP intuition
	Slide 32: KMP intuition – overlap function for P
	Slide 33: KMP intuition – overlap function for P
	Slide 34: KMP intuition – overlap function for P
	Slide 35: KMP intuition – overlap function for P
	Slide 36: KMP intuition – overlap function for P
	Slide 37: KMP intuition – overlap function for P
	Slide 38: KMP intuition – overlap function for P
	Slide 39: KMP search: match found
	Slide 40: KMP search: overlap 3
	Slide 41: KMP search: overlap 3
	Slide 42: KMP search
	Slide 43: KMP search: overlap 1
	Slide 44: KMP search: overlap 0
	Slide 45: KMP search: no matches at all
	Slide 46: KMP search: overlap 0
	Slide 47: KMP– in “English”
	Slide 48: KMP– code
	Slide 49: KMP algorithm: time complexity
	Slide 50: Worst-case example – iterations 1,2
	Slide 51: Worst-case example – iteration 3
	Slide 52: Worst-case example – iteration 4
	Slide 53: Worst-case example – iteration 5
	Slide 54: Readings

