
Pattern search. KMP.
Computing Overlap Function
in time O(M)

Lecture 2.2
by Marina Barsky

KMP demo tool

Gusfield, Chapter 2.3.2

https://cs.oberlin.edu/~mbarsky/classes/cs-381/lectures/kmp_demo/
https://drive.google.com/file/d/12t5hODTiKnKUf_8LnvQqX5AGtjR3-7Z8/view?usp=sharing

Overlap function computation in
time O(M)

How to compute OF (overlap function)

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1

Easy case:

if we have OF(j-1),

and the characters

P[j] and P[OF(j-1)+1]
match

Then we just increment by 1

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute OF

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2

t i c t i c t t i

1 2 3 4 5 6 7 8 9

Easy case:

if we have OF(j-1),

and the characters

P[j] and P[OF(j-1)+1]
match

Then we just increment by 1

OF(j)=OF(j-1)+1

How to compute OF

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3

t i c t i c t t i

1 2 3 4 5 6 7 8 9

Easy case:

if we have OF(j-1),

and the characters

P[j] and P[OF(j-1)+1]
match

Then we just increment by 1

OF(j)=OF(j-1)+1

How to compute OF

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

t i c t i c t t i

1 2 3 4 5 6 7 8 9

Easy case:

if we have OF(j-1),

and the characters

P[j] and P[OF(j-1)+1]
match

Then we just increment by 1

OF(j)=OF(j-1)+1

How to compute OF

t i c t i c t a c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

General case:

If the characters

P[j] and P[OF(j-1)+1]

do not match

- where do we find OF[j]?

How to compute OF

t i c t i c t a c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

General case:

If the characters

P[j] and P[OF(j-1)+1]

do not match

- where do we find OF[j]?

How to compute OF

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

General case:

If the characters

P[j] and P[OF(j-1)+1]

do not match

then OF(j) is less than OF(j-1)

The current overlap cannot be

extended.

We are looking for a shorter

prefix that matches last

characters of a new suffix:

We look at v= OF(j-1) and check
again the next character

P[OF(v)+1]

v = OF(7) = 4

Maybe we can extend the

overlap of substring S[1:4]

How to compute OF

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

General case:

If the characters

P[j] and P[OF(j-1)+1]

do not match

then OF(j) is less than OF(j-1)

We look at v= OF(j-1) and check
again the next character

P[OF(v)+1]

v = OF(7) = 4

Maybe we can extend the

overlap of substring S[1:4]

This substring ‘tict’ has

overlap 1. We can extend

it if the characters S[2]

and S[8] match:

S[2] != S[8]

How to compute OF

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

General case:

If the characters

P[j] and P[OF(j-1)+1]

do not match

then OF(j) is less than OF(j-1)

We look at v= OF(j-1) and check
again the next character

P[OF(v)+1]

v = OF(1) = 0

Maybe we can extend the

overlap of substring S[0:0]

We can extend it if the

characters S[1] and S[8]

match:

S[1] = S[8]

New overlap is 0+1 = 1

How to compute OF

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

General case:

If the characters

P[j] and P[OF(j-1)+1]

do not match

then we look at v=OF(j-1) and

check again the next character
P[OF(v)+1]

The pointer is bouncing through

the entire OF table until it finds

the symbol matching the current

symbol after the next
assignment of v=OF(v)

In other words

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

t i c t i c t t

1 2 3 4 5 6 7 8 9

We know that the substring tictict

ending at position 7 had suffix tict

which is overlapping with the
prefix tict of the pattern

We also know that we cannot

extend this overlap since P[8] and
P[5] do not match

Now we want to check what

overlap had the substring tict with

the prefix of the entire pattern,

since the new overlap we are

looking for is less than these 4
letters

We look at position 4 in OF table

and find that the next overlap for
substring of length 4 is of length 1

In other words

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

t i c t i c t t

1 2 3 4 5 6 7 8 9

We check if P[1+1] matches P[8]

They do not

We repeat and by the same logic

we are going to the entry 1 of OF

table, and find that there is no
overlap for this value: OF[1]=0

So we check if

P[0+1] matches P[8]

They do, so the
OF[8]=OF[1]+1=1

Overlap function: time complexity

The computation of OF is performed in time O(M) since:
• the total complexity is proportional to the total number of

times the value of v is changed
• this value is increasing by one (or remains zero) in the for

loop, and in total, during the entire algorithm, it is increasing
not more than M times

• in addition, the value of v is decreasing inside the while loop,
but since v is never less than zero, the total number it is
decreasing can not be more than the number it is increasing,
therefore is bounded by M too.
The time is therefore less than 2M: O(M)

Another example of the OF computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

We know that OL(23)=11

This means that the sequence of the first 11 characters of P is the same as that

of the last 11 characters of P[1….23]

However, the character P[11+1]=r does not match the character P[23+1]=t

Another example of the OF computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

The new overlap is less than 11

The next maximum possible overlap can be found if we look at position 11 of the

OF table and see what overlap this substring had

The substring P[1…11] has a maximum overlap of length 5

Another example of the OF computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

Let us check if this value is also the maximum overlap for the substring P[1…24]

For this we check the character next to P[5], which is p, and it does not match

our t

Therefore, the overlap we are looking for is less than 5

Another example of the OF computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

3

We check the next possible value by considering the overlap value for the

substring P[1…5]

This value is 2. Is this value of an overlap good for P[1…24]?

We check P[2+1]=t, and P[24]=t

Thus, the overlap for the substring P[1…24] is 2+1=3

Check your understanding:
Practice jumps on the following pattern

■ P = aaahamaaahamamaaahamaaaa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Solution step 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Can overlap for P[1:23] be extended for P[1:24]?
No, because P[10] != P[24]
We will check if we can extend overlap for P[1:9]

Solution step 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

P[1:9] has overlap 3, can this be extended for P[1:24]?
No, because P[4] != P[24]
We will check if we can extend overlap for P[1:3]

Solution step 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

P[1:3] has overlap 2, can this be extended for P[1:24]?
Yes, because P[3] = P[24]

Solution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 3

Overlap function computation (0-based)
of: = table of size M with all zeroes

of[0]: = 0 # first overlap is always 0

for pos from 1 to M -1:
prev_overlap: = of[pos - 1]

if P[pos] = P[prev_overlap]: # if next character is the same
of[pos]: = prev_overlap + 1 # overlap becomes bigger

else: # the suffix does not extend previous suffix
while P[pos]!=P[prev_overlap] and prev_overlap ≥ 1:
try extend a smaller prefix - based on P [of[pos-1]]

prev_overlap: = of[prev_overlap - 1]

if P[pos] = P[prev_overlap]:
of[pos] = prev_overlap + 1

if we did not find any overlap to extend
then of[pos] remains 0

return of

	Slide 1: Pattern search. KMP. Computing Overlap Function in time O(M)
	Slide 2: Overlap function computation in time O(M)
	Slide 3: How to compute OF (overlap function)
	Slide 4: How to compute OF
	Slide 5: How to compute OF
	Slide 6: How to compute OF
	Slide 7: How to compute OF
	Slide 8: How to compute OF
	Slide 9: How to compute OF
	Slide 10: How to compute OF
	Slide 11: How to compute OF
	Slide 12: How to compute OF
	Slide 13: In other words
	Slide 14: In other words
	Slide 15: Overlap function: time complexity
	Slide 16: Another example of the OF computation
	Slide 17: Another example of the OF computation
	Slide 18: Another example of the OF computation
	Slide 19: Another example of the OF computation
	Slide 20: Check your understanding: Practice jumps on the following pattern
	Slide 21: Solution step 1
	Slide 22: Solution step 2
	Slide 23: Solution step 3
	Slide 24: Solution
	Slide 25: Overlap function computation (0-based)

