
Introduction to 

suffix trees

Lecture 3.1
by Marina Barsky



Pattern matching problem -

revisited

⚫ KMP is a provable linear-time algorithm for the 

patter-matching problem

⚫ It works in a situation when the pattern is fixed and 

the text is streaming – the text is not known before 

the search starts

⚫ Let’s consider a different scenario:

⚫ text T is known first and it is kept fixed for some time

⚫ new search patterns are constantly arriving

⚫ search for each pattern should be as quick as possible



Suffix trees

⚫ Suffix tree of T exposes the internal structure of the

input text

⚫ Assuming that the text is re-written in a form of the 

suffix tree, the pattern matching problem can be 

performed in time O(M+k), where M is the length of 

a pattern, and k is the number of occurrences. The 

search time does not depend on the length of T

⚫ In addition, suffix trees provide optimal (linear-time) 

solutions to numerous complex problems other than 

pattern matching problem



Tree branch with suffixes

r

T=cacao



Tree branch with suffixes

r

T=cacao



Tree branch with suffixes

r

T=cacao

While adding a new suffix, 

we follow the path of

matches from the root, 

and create a new branch 

only when the next 

character of a suffix does 

not match



Tree branch with suffixes

r

T=cacao



Tree branch with suffixes

r

T=cacao



Suffix tree: terminology

T=cacao

root

r
edge label

internal node

leaf



Suffix tree - definition

⚫ A suffix tree for string T (of length N) is a rooted tree with
the following properties:

⚫ N leaves, numbered 1 to N.

⚫ Each internal node has at least two children.

⚫ No two edges out of a node have edge-labels beginning
with the same character.

⚫ For any leaf i, the concatenation of the edge- labels on
the path from the root to leaf i spells out the suffix T[i..N]
of T.



Suffix tree – number of nodes

⚫ A suffix tree for string T (of length N) is a rooted
tree with the following properties:

⚫ N leaves, numbered 1 to N.

⚫ Each internal node has at least two children.

⚫ Because we go from N leaves to 1 root node 
replacing at least 2 nodes with one, the entire 
process takes at most log N steps: the height of 
the suffix tree is at most log N

⚫ Corollary: the total number of nodes in the tree is 
bounded by 2log N = O(N): N leaves and N internal 
nodes



Full-text indexing

⚫ Suffix tree is an example of a full-text index – the data 

structure designed for fast search of any substring of a 

given text

⚫ All different substrings of T can be found in the suffix

tree following the path from the root



Search for pattern ca

r

T=cacao



Another suffix tree

R

4 5 16

ve

e

neves

sevenevesneves

s e v e n e v e s

1 2 3 4 5 6 7 8 9

3 7

ve

neves s

2

neves s

8

s



Another suffix tree

R

4 1

ve

e

neves

sevenevesneves

s e v e n e v e s

1 2 3 4 5 6 7 8 9

3 7

ve

neves s

2

neves s

8

s

6 5

What suffix is missing?



Another suffix tree

R

4 1

ve

e

neves

sevenevesneves

s e v e n e v e s

1 2 3 4 5 6 7 8 9

3 7

ve

neves sneves s

8

s

2 6 5

Where is the leaf for T[9…9]=s?

What if we search for pattern P=s?



Proper suffix tree

R

4 5 16

ve

e

neves$ eveneves$

neves$

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

We add a special character to the end of T – sentinel

The sentinel $ does not occur anywhere in T

s

$

9



Search for P=eve

R

4 5 16

ve

e

neves$ eveneves$

neves$

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

Search in time O(M+k)

s

$

9

k – total number 

of matches



Search for P=ne

R

4 5 16

ve

e

neves$ eveneves$
n
e

v
e
s
$

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

Search in time O(M+k)

s

$

9



Activity

❑ build a tree for T=banana

❑ explain how to search for a pattern ana



Space

T=abcde

r

This tree occupies quadratic space!

1+2+3+….N=O(N2)



Trick – re-label the edges

R

4 5 16

ve

e

neves$ eveneves$

neves$

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

s → 1-1

$

9



Trick – re-label the edges

R

4 5 16

ve

e → 2-2

neves$ eveneves$

neves$

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

1-1

$

9



Trick – re-label the edges

R

4 5 16

3-4

2-2

neves$
eveneves → 2-10

neves$

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

1-1

$

9



Linear space

R

3-4

2-2

5-10 2-10

5-10

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

3-4

5-10 9-105-10 9-10

4 8 2 6 5 1

9-10

1-1

9

10-10

The total number of leaves is O(N), the total number of internal nodes is O(N)

With a constant storage space per edge – the suffix tree can be stored in linear

space



Search

R

3-4

2-2

5-10 2-10

5-10

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

3-4

5-10 9-105-10 9-10

4 8 2 6 5 1

9-10

1-1

9

10-10

In order to find an outgoing edge which starts with e, we check which of T[2], 

T[5], T[1] or T[3] is e.

The search is as efficient as before, assuming constant time access to

each character of T



Search with suffix trees: summary

⚫ If we have preprocessed text T into its suffix

tree, we can answer a Boolean query about

an occurrence of a pattern of length M by 

performing only M steps, independently of the 

length of the text T

⚫ In order to report all k occurrences of a 

pattern, the traversal of a corresponding 

subtree is performed in O(k) steps



Readings

⚫ Text book Chapter 5

⚫ http://en.wikipedia.org/wiki/Suffix_tree

⚫ http://www.allisons.org/ll/AlgDS/Tree/Suffix/

https://drive.google.com/file/d/1t8aGI_BSkFn_jq62Jjjs6GqYRSr6gvXT/view?usp=sharing
http://en.wikipedia.org/wiki/Suffix_tree
http://www.allisons.org/ll/AlgDS/Tree/Suffix/

	Slide 1: Introduction to suffix trees
	Slide 2: Pattern matching problem - revisited
	Slide 3: Suffix trees
	Slide 4: Tree branch with suffixes
	Slide 5: Tree branch with suffixes
	Slide 6: Tree branch with suffixes
	Slide 7: Tree branch with suffixes
	Slide 8: Tree branch with suffixes
	Slide 9: Suffix tree: terminology
	Slide 10: Suffix tree - definition
	Slide 11: Suffix tree – number of nodes
	Slide 12: Full-text indexing
	Slide 13: Search for pattern ca
	Slide 14: Another suffix tree
	Slide 15: Another suffix tree
	Slide 16: Another suffix tree
	Slide 17: Proper suffix tree
	Slide 18: Search for P=eve
	Slide 19: Search for P=ne
	Slide 20: Activity
	Slide 21: Space
	Slide 22: Trick – re-label the edges
	Slide 23: Trick – re-label the edges
	Slide 24: Trick – re-label the edges
	Slide 25: Linear space
	Slide 26: Search
	Slide 27: Search with suffix trees: summary
	Slide 28: Readings

