Applications of Suffix Trees: Longest common substrings

Lecture 3.3

by Marina Barsky

The longest common substring of several strings

- The problem: find the longest substring common to two given strings I and II.
 - For example, if I=superiorcalifornialives and II=sealiver, then the longest common substring of I and II is alive.
- 1970 Knuth conjectured that the linear-time solution to the longest common substring problem would be impossible

The longest common substring for 2 strings in linear time

- Concatenate 2 strings and build the suffix tree for the concatenated string
- Label each leaf with the corresponding suffix start position, plus the ID of the string (I or II)
- Perform the depth-first traversal and mark each internal node by I, II or both, depending what suffixes are found in the subtree for this node
- Find the deepest internal node which is marked by both I and II

Example: I=bananas II=canal

b	а	n	а	n	а	S	С	а	n	а	1
1	2	3	4	5	6	7	8	9	1	1	1
									0	1	2

Example: I=bananas II=canal

b	а	n	а	n	а	S	С	а	n	а	1
1	2	3	4	5	6	7	8	9	1	1	1
									0	1	2

Ш

Example: Marking internal nodes

b	а	n	а	n	а	s	С	а	n	а	1
1	2	3	4	5	6	7	8	9	1	1	1
									0	1	2

Example: What is the longest common substring ?

b	а	n	а	n	а	s	С	а	n	а	1
1	2	3	4	5	6	7	8	9	1	1	1
									0	1	2

0 1 2

Longest common substrings: example

Query: what do *tiger* and *pigeon* have in common?

Longest common substrings: example

Query: what do *tiger* and *pigeon* have in common?

Common substrings for a set of DNA sequences

Insert suffixes of multiple strings into one tree

- Discover substrings common to viruses and humans
- Discover substrings unique to cancer

Used in the identification of the remains of US military personnel

- Mitochondrial DNA from live person is collected, sequenced and the sequences are stored in the database (I)
- Later, the DNA is extracted from the remains (II), and the longest common substring of I and II helps to narrow down the search

Potential applications of suffix trees for other types of sequential data

Time series as strings

SAX - Symbolic Aggregate approximation (by Eamon Keough, 2001)

Suffix trees for time series

Suffix trees for time series

Query: what happened after op?

Suffix trees for time series: rise and fall of stocks

50% po, 50% spo

Query: what happened after op?

E Ehrlich Pest Control Foods that mice eat in your home ...

Insider
Things That Attract Mice

YouTube EGRET EATS MOUSE - YouTube

M ABC Home & Commercial Services What Eats Rats And Mice? What You Need ...

Nebraskaland Magazine - Nebraska ... It's a Fish Eat Mouse World ...

S iStock Wild Field Mouse Eating Raspberry St...

▼

What do Mice Eat?

Automatic Trap Company What Do Mice Eat? | House Mouse Diet ...

YouTube
 Mouse Predators: Complete List of What ...

Inverted index

Query: What animal "eats mouse"

Answer is in documents 1,2,3

Meaningful search: example

mouse eats cheese (1)

Meaningful search: example Query: What animal "eats mouse" Collection of 1-sentence documents mouse eats cheese (1) cheese cat eats mouse (2) ears. snake eats mouse (3) mouse snake čo Co cheese mouse eat_S eats eats The answer is in documents 2 and 3, cheese mouse mouse but not in 1 2 3 3

Suffix tree for melodies ...

Saint-Saëns, Camille (1835-1921), Carnaval des Animaux, Orch. & 2 Pfts., Aquarium

Beethoven, Ludwig Van (1770-1827), Für Elise, Pft.

ED#ED#EAED#EFDC#DECHCDH (S-S ED#ED#EHDACEAHEG#C (B)

Suffix tree for melodies and plagiarism detection

Ε

D#

Indexing melodies...

Song 1

F [BALLADE] [Zu Strassburg steht ein hohes Haus] REG[Deutschland / Frankreich, Lothringen] MEL[-5_ 1_.23_4_ 2_.31_ $-5_$ 1_.23_4_ 2_231_ $3_$ 5_5_5_66 5_2_ $2_$ 5_4_3_2_ 1_-6_-5_ $-5_$ 1_2_3_4_ 2_1_//] >> FCT[Ballade, Braut - Werbung, Erpressung]

Song 2

F[KRIEGS] [In Boehmen liegt ein staedtchen] REG[Deutschland, Hessen, Marburg] MEL[-5_ -5_.33_3_ 3__1_ $3_{-}5_{-}5_{-}6_{-}5_{-}0_{-}$ $5_{-}7_{-}67_{-}6_{-}6_{-}5_{-}$ $4_{-}3_{-}5_{-}2_{-}5_{-}1_{-}0_{-}//] >>$ FCT[Staende -, Soldaten -, Kriegs – Lied]

2 folk songs from the Essen Associative Code (EsAC) database http://www.esac-data.org/data/

...and plagiarism detection Generalized suffix tree for two songs

The longest common substring

Set your imagination free