Suffix sorting

Lecture 4.2
Algorithm based on Larsson’s fast suffix sorting

Reading:
original paper

https://cs.oberlin.edu/~mbarsky/classes/cs-381/lectures/materials/Faster%20Suffix%20Sorting%20-%20Larsson+Sadakane.pdf

How do we construct the suffix array

* The suffix array can be constructed from the suffix tree
e Why NOT to do it:
» The suffix tree construction algorithms are complex

» We need an intermediate space to store the suffix tree —
which may be too big!

Larsson algorithm: intuition

Sort suffixes by prefix of length 1

Now, in order to sort suffixes by prefix of length 2, we can look at
the results of the previous sorting at position j+1

Once the suffixes are sorted by prefix of length 2, we can now
produce a suffix order for prefixes of length 4, by looking at the
results of the previous step at position i+2

Once suffixes are sorted by prefix of length 4, we can immediately
produce sorting of 8-character prefixes by looking at the results at
position i+4

At each iteration h, we produce a final suffix sorting for prefixes of
length 2", and in at most log N iterations we produce the final ranks
for each suffix in the suffix array

Larsson suffix sorting

Complexity: O(N log N)

Assumption: the entire input string is in memory and all the
intermediate ranks are in memory to be read at random
position in a constant time

SAMPLE RUN OF THE LARSSON
ALGORITHM

pos | ¢ h [h u a h u a

Sort (bucket sort or merge sort) by the first character of each suffix:

h-order with h=0

Prefixof |S a a C h h h i u
len 2" =1

SA (Start |9 5 8 0 1 3 6 2 4
pos of

sorted

suffixes)

X(Posin |0 1 2 3 4 5 6 7 8
SA)

rank 0 1 1 3 4 4 4 7 8
Group 1 -2 1 -3 1 -2
length

For the next step we will look at rank (SA[X]+1)

pos | ¢ h [h u a h u a

To resolve equal ranks we look at ranks at position i+21

h-order with h=1

Prefixof |S II 3 - ——;T C h h \\h i u u
len2h=2 1| , \ | \

Start pos |9 5 8 0 1 3 6 2 4 7
X(Posin |0 1 2 3 4 5 6 7 8 9
SA)

rank 0 1 1 3 4 4 4 7 8 8
Group 1 -2 1 -3 1 -2
length

(1,4) > (1,0)
Rank 1 for a at position 5 is followed by rank 4 at position 6, while rank 1 for g at
position 8 is followed by rank 0 at position 9, so we can completely resolve ranks for
two a’s based on 2 characters

pos | ¢ h [h u a h u a

To resolve equal ranks we look at ranks at position i+2h1

h-order for h=1

Prefixof | S a a C h h h i u
len 2h =2

Startpos |9 8 5 0 1 3 6 2 4
Pos in 0 1 2 3 4 5 6 7 8
SA: X

rank 0 1 2 3 4 5 5 7 8
Group 1 1 1 1 1 -2 1 -2
length

Similarly, we try to resolve ranks for h-1, h-3 and h-6:
h-1- (4,7),\h—3 —(4,8), h-6 — (4,8)}
|

and for u4 and u7: \ Not resolved
u-4 — 811 ’ u-7-— 8’1

|

pos | ¢ h [h u a h u a

To resolve equal ranks we look at ranks at position i+1

h-order with h=1

Prefixof |S a a C h h h i

len 2h =2

Start pos |9 8 5 0 1 3 6 2
Pos in 0 1 2 3 4 5 6 7
SA: X

rank 0 1 2 3 4 5 5 7
Group 1 1 1 1 1 -2 1
length . L

\ Resolved: have final

ranks based on 2
characters

pos | ¢ h [h u a h u a

To resolve equal ranks we look at ranks at position i+21

h-order with h=2

Prefixof |S a a C h h h i u u
len2h =4

Start pos |9 8 5 0 1 3 6 2 4 7
Pos in 0 1 2 3 4 5 6 7 8 9
SA: X

rank 0 1 2 3 4 5 5 7 8 8
Group 1 1 1 1 1 -2 1 -2
length

Because all prefixes of length 2 are already sorted, next we look at ranks at position
SA[X] + 2

pos | ¢ h [h u

To resolve equal ranks we look at ranks at position i+2"

h-order with h=2

S e

all a ’/ C h \'h h)
Start pos |9 8 5 ' 0 '3 6 4
Pos in 0 1 2 3 4 5 6
SA: X
rank 0 1 2 3 4 5 5 8
Group 1 1 1 1 -2 -2 -2
length

To resolve ranks for h-3 and h-6:
h-3 -(5,8), h-6 — (5,1)

To resolve ranks for u-4 and u-7:
u-4 —(8,5), u-7 —(8,0)

pos | ¢ h [h u a h u a

To resolve equal ranks we look at ranks at position i+2"

h-order with h=2

a a C h h h [
Start pos |9 8 5 0 1 6 3 2
Pos in 0 1 2 3 4 5 6 7
SA: X
rank 0 1 2 3 4 5 6 7
Group 1 1 1 1 1 1 1 1
length

To resolve ranks for h-3 and h-6:
h-3 -(5,8), h-6 — (5,1)

To resolve ranks for u-4 and u-7:
u-4 —(8,5), u-7 —(8,0)

POS

Start pos

Pos in
SA: X

rank

Group
length

Final suffix array

SA

Checking suffix order

SA2 0 1 6 3 2
C h h h i
h | u u h

h a a

S h

u
SA 0 1 6 3 2

It works!

	Slide 1: Suffix sorting
	Slide 2: How do we construct the suffix array
	Slide 3: Larsson algorithm: intuition
	Slide 4: Larsson suffix sorting
	Slide 5: Sample run of the Larsson algorithm
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Final suffix array
	Slide 15

