Suffix sorting

Lecture 4.2

Algorithm based on Larsson's fast suffix sorting

Reading: original paper

How do we construct the suffix array

- The suffix array can be constructed from the suffix tree
- Why NOT to do it:
 - > The suffix tree construction algorithms are complex
 - We need an intermediate space to store the suffix tree which may be too big!

Larsson algorithm: intuition

- Sort suffixes by prefix of length 1
- Now, in order to sort suffixes by prefix of length 2, we can look at the results of the previous sorting at position *i*+1
- Once the suffixes are sorted by prefix of length 2, we can now produce a suffix order for prefixes of length 4, by looking at the results of the previous step at position *i*+2
- Once suffixes are sorted by prefix of length 4, we can immediately produce sorting of 8-character prefixes by looking at the results at position *i*+4
- At each iteration h, we produce a final suffix sorting for prefixes of length 2^h, and in at most log N iterations we produce the final ranks for each suffix in the suffix array

Larsson suffix sorting

- Complexity: O(N log N)
- Assumption: the entire input string is in memory and all the intermediate ranks are in memory to be read at random position in a constant time

SAMPLE RUN OF THE LARSSON ALGORITHM

pos	С	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

Sort (bucket sort or merge sort) by the first character of each suffix:

h-order with h=0

Prefix of len 2 ^h = 1	\$	а	а	С	h	h	h	i	u	u
SA (Start pos of sorted suffixes)	9	5	8	0	1	3	6	2	4	7
X (Pos in SA)	0	1	2	3	4	5	6	7	8	9
rank	0	1	1	3	4	4	4	7	8	8
Group length	1	-2		1	-3			1	-2	

For the next step we will look at rank (SA[X]+1)

pos	С	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+2^{h-1}

h-order with h=1

	1		-							
Prefix of len 2 ^h = 2	\$	a	a	С	h	h	h	i	u	u
Start pos	9	5	8	0	1	3	6	2	4	7
X (Pos in SA)	0	1	2	3	4	5	6	7	8	9
rank	0	1	1	3	4	4	4	7	8	8
Group length	1	-2		1	-3			1	-2	

(1,4) > (1,0)

Rank 1 for *a* at position 5 is followed by rank 4 at position 6, while rank 1 for *a* at position 8 is followed by rank 0 at position 9, so we can completely resolve ranks for two a's based on 2 characters

pos	С	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+2^{h-1}

h-order for h=1

Prefix of len 2 ^h = 2	\$	а	а	С	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	5	7	8	8
Group length	1	1	1	1	1	-2		1	-2	

Similarly, we try to resolve ranks for h-1, h-3 and h-6:

and for u4 and u7: u-4 – (8,1), u-7 – (8,1) Not resolved

pos	С	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+1 **h-order with h=1**

Prefix of len 2 ^h = 2	\$	а	а	С	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	5	7	8	8
Group length	1	1	1	1	1	-2		1	-2	

Resolved: have final

ranks based on 2

characters

pos	С	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+2^{h-1} **h-order with h=2**

Prefix of len 2 ^h = 4	\$	а	а	С	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	5	7	8	8
Group length	1	1	1	1	1	-2		1	-2	

Because all prefixes of length 2 are already sorted, next we look at ranks at position SA[X] + 2

pos	С	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+2^h

h-order with h=2

				1				-			
	\$	а	a		С	h	h	h	i	u	u
Start pos	9	8	5		0	1	3	6	2	4	7
Pos in SA: X	0	1	2		3	4	5	6	7	8	9
rank	0	1	2		3	4	5	5	7	8	8
Group length	1	1	1		1	1	-2	-2	1	-2	

To resolve ranks for h-3 and h-6: h-3 – (5,8), h-6 – (5,1)

To resolve ranks for u-4 and u-7: u-4 – (8,5), u-7 – (8,0)

pos	с	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+2^h

h-order with h=2

	\$	а	а	с	h	h	h	i	u	u
Start pos	9	8	5	0	1	6	3	2	7	4
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	6	7	8	9
Group length	1	1	1	1	1	1	1	1	1	1

To resolve ranks for h-3 and h-6: h-3 – (5,8), h-6 – (5,1)

To resolve ranks for u-4 and u-7: u-4 – (8,5), u-7 – (8,0)

pos	с	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

All suffixes now have their unique distinct rank: all are sorted

	\$	а	а	С	h	h	h	i	u	u
Start pos	9	8	5	0	1	6	3	2	7	4
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	6	7	8	9
Group length	1	1	1	1	1	1	1	1	1	1

Final suffix array

SA	9	8	5	0	1	6	3	2	7	4

С	h	i	h	u	а	h	u	а	\$
0	1	2	3	4	5	6	7	8	9

Checking suffix order

SA2	9	8	5	0	1	6	3	2	7	4
	\$	а	а	С	h	h	h	i	u	u
		\$	h	h	i	u	u	h	а	а
			u		h	а	а		\$	h
			а			\$	h			u
			\$				u			

SA	9	8	5	0	1	6	3	2	7	4
	-	-	-	-	_	•	-		-	