
Suffix sorting

Lecture 4.2
Algorithm based on Larsson’s fast suffix sorting

Reading:
original paper

https://cs.oberlin.edu/~mbarsky/classes/cs-381/lectures/materials/Faster%20Suffix%20Sorting%20-%20Larsson+Sadakane.pdf


How do we construct the suffix array

• The suffix array can be constructed from the suffix tree

• Why NOT to do it:

➢The suffix tree construction algorithms are complex

➢We need an intermediate space to store the suffix tree –
which may be too big!



Larsson algorithm: intuition

• Sort suffixes by prefix of length 1

• Now, in order to sort suffixes by prefix of length 2, we can look at 
the results of the previous sorting at position i+1

• Once the suffixes are sorted by prefix of length 2, we can now 
produce a suffix order for prefixes of length 4, by looking at the 
results of the previous step at position i+2

• Once suffixes are sorted by prefix of length 4, we can immediately 
produce sorting of 8-character prefixes by looking at the results at 
position i+4

• At each iteration h, we produce a final suffix sorting for prefixes of 
length 2h, and in at most log N iterations we produce the final ranks 
for each suffix in the suffix array



Larsson suffix sorting

• Complexity: O(N log N)

• Assumption: the entire input string is in memory and all the 
intermediate ranks are in memory to be read at random 
position in a constant time



SAMPLE RUN OF THE LARSSON 
ALGORITHM



pos c h i h u a h u a $

i 0 1 2 3 4 5 6 7 8 9

Sort (bucket sort or merge sort) by the first character of each suffix: 

h-order with h=0

Prefix of 
len 2h = 1

$ a a c h h h i u u

SA (Start 
pos of 
sorted 
suffixes)

9 5 8 0 1 3 6 2 4 7

X (Pos in 
SA)

0 1 2 3 4 5 6 7 8 9

rank 0 1 1 3 4 4 4 7 8 8

Group 
length

1 -2 1 -3 1 -2

For the next step we will look at rank (SA[X]+1)



pos c h i h u a h u a $

i 0 1 2 3 4 5 6 7 8 9

To resolve equal ranks we look at ranks at position i+2h-1

h-order with h=1

Rank 1 for a at position 5 is followed by rank 4 at position 6, while rank 1 for a at 
position 8 is followed by rank 0 at position 9, so we can completely resolve ranks for 
two a’s based on 2 characters

Prefix of 
len 2h = 2

$ a a c h h h i u u

Start pos 9 5 8 0 1 3 6 2 4 7

X (Pos in 
SA)

0 1 2 3 4 5 6 7 8 9

rank 0 1 1 3 4 4 4 7 8 8

Group 
length

1 -2 1 -3 1 -2

(1,4) (1,0)>



pos c h i h u a h u a $

i 0 1 2 3 4 5 6 7 8 9

To resolve equal ranks we look at ranks at position i+2h-1

h-order for h=1

Similarly, we try to resolve ranks for h-1, h-3 and h-6:
h-1 – (4,7), h-3 – (4,8), h-6 – (4,8)

and for u4 and u7:
u-4 – (8,1), u-7 – (8,1)

Prefix of 
len 2h = 2

$ a a c h h h i u u

Start pos 9 8 5 0 1 3 6 2 4 7

Pos in 
SA: X

0 1 2 3 4 5 6 7 8 9

rank 0 1 2 3 4 5 5 7 8 8

Group 
length

1 1 1 1 1 -2 1 -2

Not resolved



pos c h i h u a h u a $

i 0 1 2 3 4 5 6 7 8 9

To resolve equal ranks we look at ranks at position i+1

h-order with h=1

Prefix of 
len 2h = 2

$ a a c h h h i u u

Start pos 9 8 5 0 1 3 6 2 4 7

Pos in 
SA: X

0 1 2 3 4 5 6 7 8 9

rank 0 1 2 3 4 5 5 7 8 8

Group 
length

1 1 1 1 1 -2 1 -2

Resolved: have final 
ranks based on 2 
characters



pos c h i h u a h u a $

i 0 1 2 3 4 5 6 7 8 9

To resolve equal ranks we look at ranks at position i+2h-1

h-order with h=2

Because all prefixes of length 2 are already sorted, next we look at ranks at position 
SA[X] + 2

Prefix of 
len 2h = 4

$ a a c h h h i u u

Start pos 9 8 5 0 1 3 6 2 4 7

Pos in 
SA: X

0 1 2 3 4 5 6 7 8 9

rank 0 1 2 3 4 5 5 7 8 8

Group 
length

1 1 1 1 1 -2 1 -2



pos c h i h u a h u a $

i 0 1 2 3 4 5 6 7 8 9

To resolve equal ranks we look at ranks at position i+2h

h-order with h=2

To resolve ranks for h-3 and h-6:
h-3 – (5,8), h-6 – (5,1)

To resolve ranks for u-4 and u-7:
u-4 – (8,5), u-7 – (8,0)

$ a a c h h h i u u

Start pos 9 8 5 0 1 3 6 2 4 7

Pos in 
SA: X

0 1 2 3 4 5 6 7 8 9

rank 0 1 2 3 4 5 5 7 8 8

Group 
length

1 1 1 1 1 -2 -2 1 -2



pos c h i h u a h u a $

i 0 1 2 3 4 5 6 7 8 9

To resolve equal ranks we look at ranks at position i+2h

h-order with h=2

To resolve ranks for h-3 and h-6:
h-3 – (5,8), h-6 – (5,1)

To resolve ranks for u-4 and u-7:
u-4 – (8,5), u-7 – (8,0)

$ a a c h h h i u u

Start pos 9 8 5 0 1 6 3 2 7 4

Pos in 
SA: X

0 1 2 3 4 5 6 7 8 9

rank 0 1 2 3 4 5 6 7 8 9

Group 
length

1 1 1 1 1 1 1 1 1 1



pos c h i h u a h u a $

i 0 1 2 3 4 5 6 7 8 9

All suffixes now have their unique distinct rank: all are sorted

$ a a c h h h i u u

Start pos 9 8 5 0 1 6 3 2 7 4

Pos in 
SA: X

0 1 2 3 4 5 6 7 8 9

rank 0 1 2 3 4 5 6 7 8 9

Group 
length

1 1 1 1 1 1 1 1 1 1



Final suffix array

SA 9 8 5 0 1 6 3 2 7 4



SA2 9 8 5 0 1 6 3 2 7 4

$ a a c h h h i u u

$ h h i u u h a a

u … h a a … $ h

a … $ h u

$ u …

…

c h i h u a h u a $

0 1 2 3 4 5 6 7 8 9

Checking suffix order

It works!

SA 9 8 5 0 1 6 3 2 7 4


	Slide 1: Suffix sorting
	Slide 2: How do we construct the suffix array
	Slide 3: Larsson algorithm: intuition
	Slide 4: Larsson suffix sorting
	Slide 5: Sample run of the Larsson algorithm
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Final suffix array
	Slide 15

