Approximate pattern matching

Lecture 05.01
by Marina Barsky

Sequence similarity

- The biological sequences encode and reflect higher-level molecular structures and mechanisms
- In bimolecular sequences (DNA, RNA or protein), high sequence similarity usually implies significant structural and functional similarity
- A tractable, though partly heuristic way to infer the structure and function of an unknown protein is to search for the similar known proteins at the sequence level

Similar but not identical!

- We are looking for sequences that are similar to each other
- However they are never exactly the same due to small changes accumulated over generations
- How do we define and measure similarity?

Approximate pattern matching

- Approximate - means some errors are allowed in valid matches
- The shift is accompanied by a shift in technique: dynamic programming

Dynamic Programming

The main tool in approximate pattern matching

Problem: the cheapest path in a special grid

Input:

Output:
the cheapest path from $(0,0)$ to $(6,6)$

Without the map

- Without additional information, we will always head South-East hoping to reach the destination faster
- We will pay $4 \$$
- However a better (cheaper) path exists with more free cells

Sub-problems approach

If we knew the cheapest paths from $(0,0)$ to $(5,5)$ from $(0,0)$ to $(6,5)$ from $(0,0)$ to $(5,6)$
we could choose the best last step to the destination:

Sub-problems approach

E
And this is true for any cell - what path to choose depends on the cheapest paths to the left, upper, and upper-left corner.
Since we choosing only 1 step, we can take the min of the result

Recurrence relation base condition

When $\mathrm{i}=0$, there is no cheaper way of going from $(0,0)$ to $(0, j)$ than to pay $\mathrm{j} \$$ heading strictly to the right (East)
The same for $\mathrm{j}=0$.
The base condition:
if $\mathrm{i}=0$ then $\operatorname{COST}(\mathrm{i}, \mathrm{j})=\mathrm{j}$
if $\mathrm{j}=0$ then $\operatorname{COST}(\mathrm{i}, \mathrm{j})=\mathrm{i}$

Recurrence relation (for $\mathrm{i}>0$ and $\mathrm{j}>0$)

$\operatorname{cost}(\mathrm{i}, \mathrm{j})=\min \quad\left\{\begin{array}{l}\operatorname{COST}(\mathrm{i}-1, \mathrm{j})+1 \\ \operatorname{COST}(\mathrm{i}, \mathrm{j}-1)+1 \\ \operatorname{COST}(\mathrm{i}-1, \mathrm{j}-1)+\operatorname{DIAGONAL}(\mathrm{i}, \mathrm{j})\end{array}\right.$

For each case, what is the best choice?

Recurrence relation (for $\mathrm{i}>0$ and $\mathrm{j}>0$)

$\operatorname{cost}(\mathrm{i}, \mathrm{j})=\min \quad\left\{\begin{array}{l}\operatorname{COST}(\mathrm{i}-1, \mathrm{j})+1 \\ \operatorname{cost}(\mathrm{i}, \mathrm{j}-1)+1 \\ \operatorname{cost}(\mathrm{i}-1, \mathrm{j}-1)+\operatorname{DIAGONAL}(\mathrm{i}, \mathrm{j})\end{array}\right.$

For each case, what is the best choice?

Recursive algorithm

$$
\operatorname{cost}(\mathrm{i}, \mathrm{j})=\min \quad\left\{\begin{array}{l}
\operatorname{COST}(\mathrm{i}-1, \mathrm{j})+1 \\
\operatorname{cost}(\mathrm{i}, \mathrm{j}-1)+1 \\
\operatorname{cost}(\mathrm{i}-1, \mathrm{j}-1)+\operatorname{DIAGONAL}(\mathrm{i}, \mathrm{j})
\end{array}\right.
$$

algorithm cheapestPath (array diagonalCost, N, M) return cost (N, M, diagonalCost)
algorithm cost (i, j, diagonalCost)
if $i=0$ then
return j
if $j=0$ then
return i
return min $(\boldsymbol{\operatorname { c o s t }}(i-1, j)+1, \boldsymbol{\operatorname { c o s t }}(i, j-1)+1, \boldsymbol{\operatorname { c o s t }}(i-1, j-1)+\operatorname{diagonalCost}[j][j)$

The recursion tree: $\mathrm{O}\left(3^{\mathrm{N}}\right)$

$O\left(3^{N}\right) ?$

But there are only $\mathrm{N}^{*} \mathrm{M}$ different combinations ($\left.\mathrm{i}, \mathrm{j}\right)$!

Recursive algorithm: $\mathrm{O}\left(3^{\mathrm{N}}\right)$

The algorithm is exponential in N because we call the recursive function multiple times with the same parameters!

Idea 1: store intermediate results

- Store the results of the cost(i, j) in a 2D table - so they do not need to be recomputed when needed again
- There are at most N^{2} different combinations of (i,j)
- For each combination of (i, j) we compute the cost(i, j) only once
- When we need cost(i, j) again, we first check if it is already computed
- This gives a total running time $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- The method of storing the results of recursive calls in a lookup table is called recursion with memoization

Idea 2: The bottom-up computation

- In this problem we would need to compute the cost for all combinations of (i, j)
- Instead of starting from cost(N,M) - fill in the best values for each cell of $\mathrm{N}^{*} \mathrm{M}$ table starting from the lowest values

The bottom-up computation

- Create a table of size $(N \times M)$ to store results of $\operatorname{cost}(i, j)$ for each $0 \leq i \leq N$ and $0 \leq j \leq M$
- First, fill-in the basic values of recursion - for $i=0$ and for $j=0$
- Apply recursive formula for computing the value of each cell from the lowest numbers of i and j to the highest (by rows or by columns)
- At the end, we will have the cost of the best path in the cell (N, M)

The recurrence relation: stays the same

The base condition:

```
if i=0 then COST(i,j)=j
if j=0 then COST(i,j)=i
```

The main relation (for $\mathrm{i}>0$ and $\mathrm{j}>0$)
$\operatorname{cost}(\mathrm{i}, \mathrm{j})=\min \left\{\begin{array}{l}\operatorname{COST}(\mathrm{i}-1, \mathrm{j})+1 \\ \operatorname{COST}(\mathrm{i}, \mathrm{j}-1)+1 \\ \operatorname{COST}(\mathrm{i}-1, \mathrm{j}-1)+\operatorname{DIAGONAL}(\mathrm{i}, \mathrm{j})\end{array}\right.$

We change:
the order of computation

Fill values for $\mathrm{i}=0$ and for $\mathrm{j}=0$ (the base recursion condition)

There is no cheaper way of going to the point
$(2,0)$ than paying $2 \$$

Fill values for $i=1$ (from left to right)

Fill the entire table (left-to-right top-down)

The overall cheapest possible path costs $3 \$$ But what is this path?

Keeping track of the source

Keeping track of the source

Keeping track of the source

Trace back -

 how did we get the path with the cost 3 ?

Our Dynamic Programming algorithm

Algorithm: cheapestPath (diagonalCost NxM)

allocate array DPTable ($N \mathrm{x} M$)
DPTable [0][0]:=0
for i from 1 to N :
DPTable $[i][0]:=i$
for j from 1 to M :
DPTable [0]][j]:=j
for i from 1 to N :
for j from 1 to M :
DPtable $[i][j]:=$ min (DPtable $[i-1][j-1]+$ diagonalCost $[i][j]$, DPtable $[i-1][j]+1$, DPtable $[i][j-1]+1)$
return DPTable $[\mathrm{N}][\mathrm{M}]$

2 nested loops: $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Dynamic programming: when

\square We want to optimize something: min, max
\square The solution to the problem depends on the solutions to subproblems
\square We would need the solutions to all subproblems
\square Subproblems overlap

Dynamic programming: how

- The recurrence relation
- The bottom-up computation
- The traceback
"Programming" in "Dynamic programming" has nothing to do with programming!
- Richard Bellman developed this idea in 1950s working on an Air Force project
- At that time, his approach seemed completely impractical
- He wanted to hide that he is really doing pure math from the Secretary of Defense

Richard
Bellman . . . What name could I choose? I was interested in planning but planning is not a good word for various reasons. I decided therefore to use the word "programming" and I wanted to get across the idea that this was dynamic. It was something not even a Congressman could object to. So I used it as an umbrella for my activities.

Edit distance

Transforming one sequence into another: edit operations

\square We can transform the first string S1 into the second S2 by applying a sequence of edit operations on S1 :
\square Deleting 1 symbol
\square Inserting 1 symbol
\square Replacing 1 symbol

S1	a	C	t			a	t	g
S2	a	Dele	t	${ }^{\text {n }}$ Inet ${ }^{\text {a }}$	$\mathrm{C}_{\text {Insetc }}$	a	Deset	g

In total, 4 edit operations

String alignment

\square An alignment of 2 strings is obtained by first inserting spaces (gaps), either into or at the end of both strings, and then placing 2 resulting strings one above the other, so that every character or space in either string is opposite a single character or space in the other string

Alignment

Edit distance: definition

- The edit distance between two strings is defined as the minimum number of edit operations needed to transform one string into another

In total, 3 edit operations

Optimal alignment

\square An optimal alignment is obtained from the calculation of the edit distance

Is this really the smallest number of edit operations?

How do we compute edit distance in general?

The edit distance problem

Input: 2 strings S_{1} and S_{2}
Output: the edit distance between two strings along with a sequence of the operations which describe the transformation

Full analogy with the cheapest path

1
replacement

Cost 0 characters match

The dynamic programming solution to the edit distance problem

Trivially follows from the solution for the cheapest path:

- If we moved strictly down in the grid, we inserted 1 symbol from S1
- If we moved strictly to the right, we deleted (ignored) 1 symbol of S1
- If we moved by diagonal of cost 0 , we matched the corresponding characters
- If we moved by diagonal of cost 1, we replaced one symbol in S1 with the corresponding symbol in S2

Useful abstraction: edit graph

An edit graph for a pair of strings S_{1} and S_{2} has $(N+1)^{*}(M+1)$ vertices, each labeled with a corresponding pair (i, j), $0 \leq i \leq N, 0 \leq j \leq M$

The edges are directed and their weight depends on the specific string problem: for the edit distance problem - red edges have cost 0 , black edges have cost 1

The cheapest path in the edit graph

The cost of a cheapest path from vertex $(0,0)$ to vertex (N, M) in this edit graph corresponds to the edit distance between S1 and S2, and the path itself represents a series of edit operations and an optimal alignment of S1 with S2

Calculating edit distance. Base condition

The minimum number of edit operations we need in order to transform string a into an empty string (of length 0) is 1 (deletion)

Therefore the minimum edit distance between ε and a is 1

Calculating edit distance. Base condition

The same is true for ε and ac, aca, acat

Calculating edit distance. Base condition

In order to transform ε into a, we need to insert 1 character. This is the best way to do it, there is no cheaper way.

The same for
transforming ε into $a t$, atc, atca with 2, 3, 4 insertions respectively

Calculating edit distance. Filling cells for $\mathrm{i}>0$ and $\mathrm{j}>0$

	s_{2}	a	t	c	a	
s_{1}	0	1	2	3	4	
a	1					
c	2					
a	3					
t	4					

There are only 3 different ways to move through the next cell in the graph:

1. Increase both i and j (diagonal)
if $\mathrm{S} 1[\mathrm{i} \neq \mathrm{S} 2[\mathrm{j}]: 1$ edit
if S1[i]=S2[j] : 0 edits
2. Increase only i (insert $\left.S_{1}[i]\right)$ with the cost 1
3. Increase only j (delete - ignore $\left.S_{1}[i]\right)$ with the cost 1

Calculating edit distance. Filling cells for $\mathrm{i}>0$ and $\mathrm{j}>0$

	s_{2}	a	t	c	a	
s_{1}	0	1	2	3	4	
a	1					
c	2					
a	3					
t	4					

Thus, if we know the edit distance $D[i-1, j-1], D[i-1, j]$ and $D[i, j-1]$, we can correctly calculate $D[i, j]$

This is true since there are no other ways of moving through cell [][][].

Reaching the top, left and top-left corners by different paths cannot produce a better value than is already in these 3 cells, since they contain the minimum cost by definition

Calculating edit distance.

Filling cells for $\mathrm{i}>0$ and $\mathrm{j}>0$

	s_{2}	a	t	c	a	
s_{1}	0	1	2	3	4	
a	1	a	1	2	3	
c	2					
a	3					
t	4					

$D(i, j)=\min \left\{\begin{array}{l}D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+c(i, j)\end{array}\right.$
where $c(i, j)=\left\{\begin{array}{l}0 \text { if } S 1[]=S 2[]] \\ 1 \text { if } S 1[] \neq S 2[]]\end{array}\right.$

Calculating edit distance.

Filling cells for $\mathrm{i}>0$ and $\mathrm{j}>0$

| | s_{2} | a | t | c | a | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| s_{1} | 0 | 1 | 2 | 3 | 4 | | |
| a | 1 | | 1 | 2 | 3 | | |
| c | 2 | 1 | | | 2 | | |
| a | 3 | | | | | | |
| t | 4 | | | | | | |
| | | | | | | | |
| | | i | | | | | |

$D(i, j)=\min \left\{\begin{array}{l}D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+c(i, j)\end{array}\right.$
where $c(i, j)=\left\{\begin{array}{l}0 \text { if } S 1[i]=S 2[]] \\ 1 \text { if } S 1[i] \neq S 2[]]\end{array}\right.$

Calculating edit distance.

Filling cells for $\mathrm{i}>0$ and $\mathrm{j}>0$

	s_{2}	a	t	c	a	
s_{1}	0	1	2	3	4	
a	1	d	1	2	3	
c	2	1	1		2	
a	3		λ	λ		
t	4					

$D\left(i, j=\min \left\{\begin{array}{l}D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+c(i, j)\end{array}\right.\right.$
where $c(i, j)=\left\{\begin{array}{l}0 \text { if } S 1[i]=S 2[j] \\ 1 \text { if } S 1[i] \neq S 2[]]\end{array}\right.$

Calculating edit distance.

 Filling cells for $\mathrm{i}>0$ and $\mathrm{j}>0$| | s_{2} | a | t | c | a | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| s_{1} | 0 | 1 | 2 | 3 | 4 | |
| a | 1 | a | 1 | 2 | 3 | |
| c | 2 | 1 | 1 | | 2 | |
| a | 3 | | 2 | 2 | | |
| t | 4 | 3 | 2 | 3 | 2 | |
| | | | | | | |
| | | i | | | | |

$D\left(i, j=\min \left\{\begin{array}{l}D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+c(i, j)\end{array}\right.\right.$
where $c(i, j)=\left\{\begin{array}{l}0 \text { if } S 1[]=S 2[]] \\ 1 \text { if } S 1[] \neq S 2[]]\end{array}\right.$

The sequence of edit operations

	s_{2}	a	t	c	a	
s_{1}	0	1	2	3	4	
a	1		1	2	3	
c	2	1				2

Place a character in S1 opposite to a character in S2

Place a character in S1 opposite to a gap in S2
$\longrightarrow \quad$ Place a character in S2 opposite to a gap in S1

$S 1$	a	-	c	a	t
$S 2$	a	t	c	a	-

Optimal alignment

$S 1$	a	-	c	a	t
$S 2$	a	t	c	a	-

Explanation:

S_{2} can be obtained from S_{1} by a series of the following edit operations:

Insertion of t at position 2
Deletion of t at position 5

An optimal alignment is not unique

$S 1$	-	a	t	t	a	a	g
$S 2$	t	a	-	t	c	a	g

$S 1$	-	a	t	t	a	a	g
$S 2$	t	a	t	c	a	-	g

2 different alignments with the optimal edit distance 3

