
Lecture 5.2
by Marina Barsky

Longest Common Subsequence.

String Similarity and alignments. 



Recap: Useful abstraction: edit graph

t

a

c

a

S1

a    t c   aS2

j

i

An edit graph for a pair of  
strings S1 and S2 has  
(N+1)*(M+1) vertices,  each 
labeled with a  
corresponding pair (i,j), 
0 ≤ i ≤ N, 0 ≤ j ≤ M

The edges are directed and 
their weight depends  on the 
specific string  problem: for 
the edit  distance problem –
red  edges have cost 0, black  
edges have cost 1
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The cost of a  cheapest 
path from vertex (0,0) to 
vertex  (N,M) in this edit  
graph corresponds to  the 
edit distance between S1 
and S2,  and the path itself  
represents a series of  edit 
operations and an optimal 
alignment of S1 with S2

The cheapest path in the edit graph
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Motivation: sequence similarity

❏ Life is based on a repertoire of successful structural and 
interrelated building blocks which are passed around 

❏ Biological universality occurs at many levels of details, so 
we can compare not only the sequence data, but 3D shapes, 
chemical pathways, morphological features etc.

“Everything in life is so similar that the same genes that work 
in flies are the ones that work in humans” (Wieschaus, 1995)



Why compare biosequences

❏ The biological sequences (DNA, RNA or protein) encode 
and reflect the higher-level molecular structures and 
mechanisms

❏ High sequence similarity usually implies significant 
structural and functional similarity

❏ A tractable, though partly heuristic way to infer structure 
and function of an unknown protein is to search for the 
similar known proteins at the sequence level: similar but not 
identical!



Note of caution in interpreting 
sequence similarity

❏ There is not a one-to-one correspondence between similar 
sequences and similar structures or between sequences and 
functions:

❏ Quite similar structures can be obtained from 
completely unrelated sequences

❏ Very similar sequences can produce very different 
structures depending on the location of a change



Edit distance as a similarity metric

S1 a - c a t

S2 a t c a -

If the number of basic evolutionary events is small, we 
infer that the divergence between S1 and S2 happened not 
so long time ago, and that the two strings are still similar

The smaller is the edit distance between 2 strings, the 
more similar they are



Optimal alignment 

S1 a - c a t

S2 a t c a -

Evolutionary explanation:

S2 evolved from S1 by a series of the following mutations:  

Insertion of nucleotide t at position 2

Deletion of nucleotide t at position 5



An optimal alignment is not  unique

S1 - a t t a a g

S2 t a - t c a g

S1 - a t t a a g

S2 t a t c a - g

2 different alignments with the optimal minimal cost 3

The exact sequence of changes (mutations) cannot be 
determined



The edit-distance based similarity  
metric

S a c c g c

S1 a c g c

The smaller is the edit distance, the larger is the 

similarity.

S is more similar to S1 than to S2

S a c c g c

S2 c c g t

Edit distance: 1 Edit distance: 2



The edit-distance based similarity  
metric: not enough

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

The edit distance alone is not always a sufficient metric to characterize 

similarity between strings

In these 2 examples, the edit distance between S and S1 is the same as 

an edit distance between S and S2, but it is intuitively clear that S is 

more similar to S2 than to S1, since they share more identical  

characters

To infer similarity – we want to evaluate what was preserved rather than 

what changed



The Longest Common Substring

• The longest substring, common to both strings: the 

longest sequence of consecutive  characters which occur 

in both strings

The longest sequence of consecutive matches

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

Not very helpful



The Longest Common Subsequence

❏ A subsequence of a string S is a subset of  

characters of S in their original relative order.

A subsequence does not need to consist of 

the consecutive characters of S

❏ Given 2 strings S1 and S2, a common  
subsequence for 2 strings is a subsequence which  
appears both in S1 and S2

❏ The longest common subsequence is a longest  

between all possible subsequences of S1 and S2



Substring vs subsequence

w i n t e r s

w i n t e r s

w i n t e r s

its – a subsequence of winters

inter – both substring and subsequence of

winters



m a d b u n n y

b a d m o n e y

(LCS)

m a d b u n n y

b a d m o n e y

How can we be sure that adny is the longest 

common subsequence?

Common subsequence of length 4

Common subsequence of length 3

Longest Common Subsequence



The LCS problem

Input: 2 strings S1 and S2

Output: the length of the longest subsequence 
common to both strings along with the sub-
sequence itself



Edit Graph for LCS problem

An edit graph for a pair of  
strings S1 and S2 can be used 
to solve the LCS problem

We need to change edge 
weights: in the LCS problem 
we are only interested in a 
sequence of matches – red  
edges have cost 1, black  
edges have cost 0
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Dynamic Programming solution for LCS. 
Edit graph

Since we are interested in a  

longest sequence of matches,  

we give to the red edges cost 1  

and to all the other edges cost 0

Since aligning 2 different  

characters does not contribute  

to the total score we do not  

consider the diagonal edges in  

case of mismatch

1

0

0 0

0

b a d m o n e y

0

m

a

d

b

u

n

n

y



The LCS problem can be  

reduced to finding the  

greediest (the longest)  

path through matches -

the path with the largest  

cost

1

0

0 0

0

Dynamic Programming  solution for LCS. 
Greedy path

b a d m o n e y

0

m

a

d

b

u

n

n

y



All the black edges are of  
cost 0, so moving strictly  
right or down gives paths of 
a total cost 0

1

0

0 0

0

Base condition

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0

a 0

d 0

b 0

u 0

n 0

n 0

y 0



LCS. Recurrence relation

COST(i-1,j)

COST(i,j)=max COST(i,j-1)

COST(i-1,j-1)+1 if S1[i]=S2[j]

We only consider the 
diagonal edge if the 
characters match



Tabular computation. Row 1

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0

d 0

b 0

u 0

n 0

n 0

y 0



j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0

b 0

u 0

n 0

n 0

y 0

Alternative path

Tabular computation. Row 2



j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0

u 0

n 0

n 0

y 0

Tabular computation. Row 3



j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0

n 0

n 0

y 0

Tabular computation. Row 4



j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0

y 0

Tabular computation. Rows 5,6



j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

Read the length of the  

longest common  

subsequence in cell [N][M]

Tabular computation. End



LCS. Traceback

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

Find the subsequence  

itself tracing the  

sequence of matches  

backwards



LCS. Alignment

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

j

i S1 - m a d - - b u n n - y

S2 b - a d m o - - - n e y

Note, that only the matches 

are aligned, since the problem  

we are solving – find the  

longest sequence of matches

We don’t count the number of  

edit operations, since their cost  

in this model is 0



The edit-distance based similarity metric: 
not enough

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

In these 2 examples, the edit distance between S and S1 is 

the same as an edit distance between S and S2, but it is 

intuitively clear that S is more similar to S2 than to S1, since 

they share more identical characters



The LCS-based similarity metric: 
not enough

S a c c c

S1 a c - c

S a - c c - - c

S2 a t c - t g c

The longer is the LCS, the more similar are two strings  

The LCS alone is not a sufficient similarity metric

We want to score both the matches and the differences

In these 2 examples, the LCS of S and S1 is the same as the LCS 
of S and S2, but it is intuitively clear that S is more similar to 
S1 than to S2,  since they have less different characters



Basic optimal alignment scores

S2 t g c a t a

S1

a

t

c

t

g

a

t

Let us set the simplest weights of the  

edges:

For a match: award of 1

For a mismatch: penalty of -1  

For a gap (insertion/deletion): 

penalty of -1

Then the maximum cost of the path in the 

edit graph will give a numerical score of 

the similarity between S1 and S2: large 

positive values – two strings are similar, 

negative or low positive values – the 

strings are different

1-1

-1

Everything else is exactly the same

-1



Optimal alignment. Base condition

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1

t -2

c -3

t -4

g -5

a -6

t -7

Since moving from point (0,0) 

strictly to the right or to the bottom 

corresponds to a series of gaps, 

we initialize the 0-column and 0-

row with consecutive negative 

integers

-1

-1 1 0 -1



Optimal alignment. 
Recurrence relation

COST(i-1,j) - 1 

COST(i,j)=max COST(i,j-1) - 1

COST(i-1,j-1)+diagonal(i,j)

1 if S1[i]=S2[j]

diagonal(i,j)=

-1 if S1[i]≠S2[j]



Optimal alignment. Row 1

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2

c -3

t -4

g -5

a -6

t -7

-1 1 0

-1

-1



Optimal alignment. Row 2

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3

t -4

g -5

a -6

t -7

-1 1 0

-1

-1



Optimal alignment. Row 3

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4

g -5

a -6

t -7

-1 1 0

-1

-1



Optimal alignment. Row 4

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4 0 -1 -1 -1 0 -1

g -5

a -6

t -7

-1 1 0

-1

-1



Optimal alignment. Row 5

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4 -2 -1 -1 -1 0 -1

g -5 -1 -1 -2 -2 -1 -1

a -6

t -7

-1 1 0

-1

-1



Optimal alignment. Rows 6,7

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4 -2 -1 -1 -1 0 -1

g -5 -1 -1 -2 -2 -1 -1

a -6 -2 -2 -2 -1 -2 0

t -7 -3 -3 -3 -2 0 -1

-1 1 0

-1

-1



Optimal alignment. Traceback
S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4 -2 -1 -1 -1 0 -1

g -5 -1 -1 -2 -2 -1 -1

a -6 -2 -2 -2 -1 -2 0

t -7 -3 -3 -3 -2 0 -1



Optimal alignment. Alignment
S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4 -2 -1 -1 -1 0 -1

g -5 -1 -1 -2 -2 -1 -1

a -6 -2 -2 -2 -1 -2 0

t -7 -3 -3 -3 -2 0 -1

S1 a t c t g - a t -

S2 - t - - g c a t a



General scoring schemes
COST(i-1,j) + gapCost

COST(i,j)=max COST(i,j-1) + gapCost

COST(i-1,j-1)+score(S1[i], S2[j])

Here the gapCost is the cost of aligning each character with a 

gap, and it should be negative in order to penalize

score depends on the characters placed opposite to each 

other. It is always positive for a pair of matching characters

The total score is a summative score of aligning the characters

in S1 and S2, maximized over all the combinations of possible

alignments



The scoring matrix

S1 a t c t g - a t -

S2 - t - - g c a t a

-1 1 -1 -1 1 -1 1 1 -1

Total score is -1

a c g t -

a 1 -1 -1 -1 -1

c -1 1 -1 -1 -1

g -1 -1 1 -1 -1

t -1 -1 -1 1 -1

- -1 -1 -1 -1 n/a

Our scoring matrix
For an alphabet Σ of size σ add one more artificial

character ‘-’.

Then the scoring matrix is a (σ+1)*(σ+1) table, 

where for each character of Σ plus ‘-’ there is a cost 

of aligning this character with each other character.

If an optimal alignment has been computed 

according to a given scoring matrix, the total score 

of an alignment is the sum of scores of the columns 

of an alignment table



The sequence of mutations
S1 a t c t g - a t -

S2 - t - - c c a t a

This alignment suggests that S1 was transformed into S2 by the following 

sequence of evolutionary events:

Deletion of nucleotide a 

Deletion of nucleotides c and t 

Substitution of nucleotide g by c 

Insertion of nucleotide c 

Deletion of nucleotide a

Since an optimal alignment is not unique, this sequence of mutations is only one of 

many possible explanations



Point Mutations

⚫ Mutagenesis (causes of mutations)

⚫ Wrong base-pairing during replication - point

⚫ Damage from the environmental agents - point

⚫ Unequal crossing-over - macromutations

⚫ Insertions from mobile genes (transposons) –
macromutations

⚫ Point mutations can be as deleterious as the 
macromutations, since they can break the reading frame 
or introduce a stop codon in the middle of the reading 
frame

YOU ARE THE TOP DOG

YOU ARE THE POP DOG

YOO UAR ETH ETO PDO

1 substitution

1 insertion



Mutations

⚫ Regulatory mechanisms of DNA repair try to undo the
mutations

⚫ Despite this, all cells possess a spontaneous 
mutation rate defined as a number of mutations 
which normally occur in each genome over a 
particular time

⚫ This allows to infere the evolutionary distance between
species diverged from a common ancestor



Some mutations are more 
likely than the others

More 

likely

More 

likely



The first scoring matrix for a real DNA

a c g t -

a 3 0 2 0 -1

c 0 3 0 2 -1

g 2 0 3 0 -1

t 0 2 0 3 -1

- -1 -1 -1 -1

A, G – 2-ring bases 

T, C – 1-ring bases

Mutation which preserves rings number is much 
more likely than changing the number of rings.

The score of exact matches: + 3

The score of transitions A->G, G->A and T->C, C->A: + 2

The score of any other mismatch (transversions) is 0



Gaps

⚫ The deletion or insertion of a single nucleotide is often
called indel (insertion/deletion)

⚫ In real molecular life, the insertions/ deletions occur in a
consecutive block, rather than at the level of single
nucleotides

⚫ The deletion/insertion of an entire substring occurs as a
single mutational event

⚫ The sequence of consecutive insertions/deletions is called a
gap



Scoring gaps

Each row represents a part of the genomic sequence of a
different strain of HIV viruses. 3 bottom rows represent mutated
genotypes with an ancestral sequence in the top row.

How many evolutionary events did really occur in each of these 3
cases?



Scoring gaps

⚫ An optimal alignment of two biological sequences is intended
to reflect the likelihood of mutational events.

⚫ Since a gap of more than 1 space can be created by a single
mutational event, the alignment model should reflect the
true distribution of indels in gaps, not merely the number
of indels in an alignment



Scoring gaps

⚫ Constant gap weights
⚫ Give score -1 for each gap independently of its length

⚫ Affine gap weights
⚫ Give score ρ + μ M for a gap of length M
⚫ ρ is comparatively large (for example, -1)
⚫ μ is comparatively small (for example -0.01)

In this way we count each gap as a single mutational event,
but we take into account that longer gaps are less likely to
occur than the shorter gaps



The recurrence relation for 
affine gap weights

COST(i-1,j) -0.01

COST(i,j)=max

COST(i-1,j) - 1 - 0.01

COST(i,j-1) -0.01

COST(i,j)=max

COST(i,j-1) - 1 - 0.01

When we compute the cost of 

moving from the top, we 

distinguish 2 cases:

1. if the top character was 

already a part of a gap, we 

just penalize for the 

extension of the gap.

2. Otherwise, we penalize for 

the opening of a new gap of 

length 1

The same when computing the

cost of moving from the left

to the current cell



The recurrence relation for 
affine gap weights

COST(i,j) = COST(i-1,j-1) + score(S1[i], S2[j])

COST(i,j)

COST(i,j)=max COST(i,j)

COST(i,j)

When computing the 

cost of moving from a 

diagonal cell,

we account only for a 

score of aligning 

characters at current 

positions S1[i] and S2[j],

as we did before

Then we take the max 

of these 3 values



Optimal alignment with affine gap weights and
the DNA scoring matrix

S2 t g c a t a

S1 0

a

t

c

t

g

a

t

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine



Optimal alignment with affine gap weights and the DNA
scoring matrix. Base condition

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01

t -1.02

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine



Optimal alignment with affine gap weights and the DNA
scoring matrix. Row 1

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine



Optimal alignment with affine gap weights and the DNA
scoring matrix. Row 2

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine



Optimal alignment with affine gap weights and the DNA
scoring matrix. Row 3

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04

g -1.05

a -1.06

t -1.07



Optimal alignment with affine gap weights and the DNA
scoring matrix. Rows 4,5

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04 1.97 0.98 3.99 3.98 5.97 4.96

g -1.05 0.96 4.97 3.96 5.99 4.98 7.97

a -1.06

t -1.07



Optimal alignment with affine gap weights and the DNA
scoring matrix. Rows 6,7

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04 1.97 0.98 3.99 3.98 5.97 4.96

g -1.05 0.96 4.97 3.96 5.99 4.98 7.97

a -1.06 -0.14 3.96 4.97 6.96 5.99 7.98

t -1.07 1.94 2.95 5.96 5.95 9.96 8.95



Optimal alignment with affine gap weights and the DNA
scoring matrix. Row 7

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine



Optimal alignment with affine gap weights and the DNA
scoring matrix. Traceback

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95



The global alignment

S1 a t c t g - a t -

S2 - - - t g c a t a

This alignment is called 

global since it represents

an alignment with the best 

overall cost for the entire 

strings S1 and S2

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95



The local alignment

⚫ The similarity of biological strings rarely extends through
the entire length of these strings

⚫ Example: homeodomain of the homeobox genes is a very
conserved substring in overall very different sequences

⚫ How to detect the regions of local similarity?



The local alignment problem

⚫ Find a pair (S1[i1…i2], S2[j1…j2]) of substrings of S1 and S2 such
that the global alignment score between these substrings is
maximal among all possible pairs of substrings of S1 and S2

⚫ In terms of paths in edit graph: find the path with the
best cost between any pair of vertices



The solution to the local alignment problem.
Simple scoring example

1-1 0

-1

-1

When choosing the best move through 

the next cell, take into account an 

additional possibility to start from vertex 

(0,0) with an overall 0-cost

This means that if the cost of some path 

drops below 0, we abandon this path 

and restart the cost to find a better local 

path starting from the current position.

S2 t g c a t a

S1 0

a 0

t

c

t

g

a

t



S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0

t 0

c 0

t 0

g 0

a 0

t 0

1-1 0

The local alignment.
Base condition

-1

-1



The local alignment. 
Recurrence relation

0

COST(i-1,j) + gapCost 

COST(i,j)=max COST(i,j-1) + gapCost

COST(i-1,j-1)+score(S1[i], S2[j])

The cost never drops below 0.

If it is negative, we start a new path from the same point with a cost 0



The local alignment. Row 1

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0

c 0

t 0

g 0

a 0

t 0

0

-1

-1 1 -1



The local alignment. Row 2

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0

t 0

g 0

a 0

t 0

0

-1

-1 1 -1



The local alignment. Row 3

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0

g 0

a 0

t 0

0

-1

-1 1 -1



The local alignment. Row 4

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0 1 0 0 0 1 0

g 0

a 0

t 0

0

-1

-1 1 -1



The local alignment. Row 5

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0 1 0 0 0 1 0

g 0 0 2 1 0 0 0

a 0

t 0

0

-1

-1 1 -1



The local alignment. Row 6

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0 1 0 0 0 1 0

g 0 0 2 1 0 0 0

a 0 0 1 1 2 1 1

t 0

0

-1

-1 1 -1



The local alignment. Row 7

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0 1 0 0 0 1 0

g 0 0 2 1 0 0 0

a 0 0 1 1 2 1 1

t 0 1 0 0 1 3 2

0

-1

-1 1 -1



Most similar local pattern

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0 1 0 0 0 1 0

g 0 0 2 1 0 0 0

a 0 0 1 1 2 1 1

t 0 1 0 0 1 3 2

S1 a t c t g - a t -

S2 - - - t g c a t a



Alignments:
Running time

⚫ O(NM)

⚫ If we want to find the regions of high similarity between a new 
sequence of size M and all G genes of size N each in the 
database, we need to perform O(MNG) operations
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