
Lecture 5.2
by Marina Barsky

Longest Common Subsequence.

String Similarity and alignments.

Recap: Useful abstraction: edit graph

t

a

c

a

S1

a t c aS2

j

i

An edit graph for a pair of
strings S1 and S2 has
(N+1)*(M+1) vertices, each
labeled with a
corresponding pair (i,j),
0 ≤ i ≤ N, 0 ≤ j ≤ M

The edges are directed and
their weight depends on the
specific string problem: for
the edit distance problem –
red edges have cost 0, black
edges have cost 1

0,0 0,1 0,2 0,3 0,4

1,0

2,0

3,0

4,0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

The cost of a cheapest
path from vertex (0,0) to
vertex (N,M) in this edit
graph corresponds to the
edit distance between S1
and S2, and the path itself
represents a series of edit
operations and an optimal
alignment of S1 with S2

The cheapest path in the edit graph

t

a

c

a

S1

a t c aS2

j

i

0,0 0,1 0,2 0,3 0,4

1,0

2,0

3,0

4,0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Motivation: sequence similarity

❏ Life is based on a repertoire of successful structural and
interrelated building blocks which are passed around

❏ Biological universality occurs at many levels of details, so
we can compare not only the sequence data, but 3D shapes,
chemical pathways, morphological features etc.

“Everything in life is so similar that the same genes that work
in flies are the ones that work in humans” (Wieschaus, 1995)

Why compare biosequences

❏ The biological sequences (DNA, RNA or protein) encode
and reflect the higher-level molecular structures and
mechanisms

❏ High sequence similarity usually implies significant
structural and functional similarity

❏ A tractable, though partly heuristic way to infer structure
and function of an unknown protein is to search for the
similar known proteins at the sequence level: similar but not
identical!

Note of caution in interpreting
sequence similarity

❏ There is not a one-to-one correspondence between similar
sequences and similar structures or between sequences and
functions:

❏ Quite similar structures can be obtained from
completely unrelated sequences

❏ Very similar sequences can produce very different
structures depending on the location of a change

Edit distance as a similarity metric

S1 a - c a t

S2 a t c a -

If the number of basic evolutionary events is small, we
infer that the divergence between S1 and S2 happened not
so long time ago, and that the two strings are still similar

The smaller is the edit distance between 2 strings, the
more similar they are

Optimal alignment

S1 a - c a t

S2 a t c a -

Evolutionary explanation:

S2 evolved from S1 by a series of the following mutations:

Insertion of nucleotide t at position 2

Deletion of nucleotide t at position 5

An optimal alignment is not unique

S1 - a t t a a g

S2 t a - t c a g

S1 - a t t a a g

S2 t a t c a - g

2 different alignments with the optimal minimal cost 3

The exact sequence of changes (mutations) cannot be
determined

The edit-distance based similarity
metric

S a c c g c

S1 a c g c

The smaller is the edit distance, the larger is the

similarity.

S is more similar to S1 than to S2

S a c c g c

S2 c c g t

Edit distance: 1 Edit distance: 2

The edit-distance based similarity
metric: not enough

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

The edit distance alone is not always a sufficient metric to characterize

similarity between strings

In these 2 examples, the edit distance between S and S1 is the same as

an edit distance between S and S2, but it is intuitively clear that S is

more similar to S2 than to S1, since they share more identical

characters

To infer similarity – we want to evaluate what was preserved rather than

what changed

The Longest Common Substring

• The longest substring, common to both strings: the

longest sequence of consecutive characters which occur

in both strings

The longest sequence of consecutive matches

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

Not very helpful

The Longest Common Subsequence

❏ A subsequence of a string S is a subset of

characters of S in their original relative order.

A subsequence does not need to consist of

the consecutive characters of S

❏ Given 2 strings S1 and S2, a common
subsequence for 2 strings is a subsequence which
appears both in S1 and S2

❏ The longest common subsequence is a longest

between all possible subsequences of S1 and S2

Substring vs subsequence

w i n t e r s

w i n t e r s

w i n t e r s

its – a subsequence of winters

inter – both substring and subsequence of

winters

m a d b u n n y

b a d m o n e y

(LCS)

m a d b u n n y

b a d m o n e y

How can we be sure that adny is the longest

common subsequence?

Common subsequence of length 4

Common subsequence of length 3

Longest Common Subsequence

The LCS problem

Input: 2 strings S1 and S2

Output: the length of the longest subsequence
common to both strings along with the sub-
sequence itself

Edit Graph for LCS problem

An edit graph for a pair of
strings S1 and S2 can be used
to solve the LCS problem

We need to change edge
weights: in the LCS problem
we are only interested in a
sequence of matches – red
edges have cost 1, black
edges have cost 0

t

a

c

a

S1

a t c aS2

j

i

0,0 0,1 0,2 0,3 0,4

1,0

2,0

3,0

4,0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Dynamic Programming solution for LCS.
Edit graph

Since we are interested in a

longest sequence of matches,

we give to the red edges cost 1

and to all the other edges cost 0

Since aligning 2 different

characters does not contribute

to the total score we do not

consider the diagonal edges in

case of mismatch

1

0

0 0

0

b a d m o n e y

0

m

a

d

b

u

n

n

y

The LCS problem can be

reduced to finding the

greediest (the longest)

path through matches -

the path with the largest

cost

1

0

0 0

0

Dynamic Programming solution for LCS.
Greedy path

b a d m o n e y

0

m

a

d

b

u

n

n

y

All the black edges are of
cost 0, so moving strictly
right or down gives paths of
a total cost 0

1

0

0 0

0

Base condition

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0

a 0

d 0

b 0

u 0

n 0

n 0

y 0

LCS. Recurrence relation

COST(i-1,j)

COST(i,j)=max COST(i,j-1)

COST(i-1,j-1)+1 if S1[i]=S2[j]

We only consider the
diagonal edge if the
characters match

Tabular computation. Row 1

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0

d 0

b 0

u 0

n 0

n 0

y 0

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0

b 0

u 0

n 0

n 0

y 0

Alternative path

Tabular computation. Row 2

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0

u 0

n 0

n 0

y 0

Tabular computation. Row 3

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0

n 0

n 0

y 0

Tabular computation. Row 4

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0

y 0

Tabular computation. Rows 5,6

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

Read the length of the

longest common

subsequence in cell [N][M]

Tabular computation. End

LCS. Traceback

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

Find the subsequence

itself tracing the

sequence of matches

backwards

LCS. Alignment

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

j

i S1 - m a d - - b u n n - y

S2 b - a d m o - - - n e y

Note, that only the matches

are aligned, since the problem

we are solving – find the

longest sequence of matches

We don’t count the number of

edit operations, since their cost

in this model is 0

The edit-distance based similarity metric:
not enough

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

In these 2 examples, the edit distance between S and S1 is

the same as an edit distance between S and S2, but it is

intuitively clear that S is more similar to S2 than to S1, since

they share more identical characters

The LCS-based similarity metric:
not enough

S a c c c

S1 a c - c

S a - c c - - c

S2 a t c - t g c

The longer is the LCS, the more similar are two strings

The LCS alone is not a sufficient similarity metric

We want to score both the matches and the differences

In these 2 examples, the LCS of S and S1 is the same as the LCS
of S and S2, but it is intuitively clear that S is more similar to
S1 than to S2, since they have less different characters

Basic optimal alignment scores

S2 t g c a t a

S1

a

t

c

t

g

a

t

Let us set the simplest weights of the

edges:

For a match: award of 1

For a mismatch: penalty of -1

For a gap (insertion/deletion):

penalty of -1

Then the maximum cost of the path in the

edit graph will give a numerical score of

the similarity between S1 and S2: large

positive values – two strings are similar,

negative or low positive values – the

strings are different

1-1

-1

Everything else is exactly the same

-1

Optimal alignment. Base condition

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1

t -2

c -3

t -4

g -5

a -6

t -7

Since moving from point (0,0)

strictly to the right or to the bottom

corresponds to a series of gaps,

we initialize the 0-column and 0-

row with consecutive negative

integers

-1

-1 1 0 -1

Optimal alignment.
Recurrence relation

COST(i-1,j) - 1

COST(i,j)=max COST(i,j-1) - 1

COST(i-1,j-1)+diagonal(i,j)

1 if S1[i]=S2[j]

diagonal(i,j)=

-1 if S1[i]≠S2[j]

Optimal alignment. Row 1

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2

c -3

t -4

g -5

a -6

t -7

-1 1 0

-1

-1

Optimal alignment. Row 2

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3

t -4

g -5

a -6

t -7

-1 1 0

-1

-1

Optimal alignment. Row 3

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4

g -5

a -6

t -7

-1 1 0

-1

-1

Optimal alignment. Row 4

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4 0 -1 -1 -1 0 -1

g -5

a -6

t -7

-1 1 0

-1

-1

Optimal alignment. Row 5

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4 -2 -1 -1 -1 0 -1

g -5 -1 -1 -2 -2 -1 -1

a -6

t -7

-1 1 0

-1

-1

Optimal alignment. Rows 6,7

S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4 -2 -1 -1 -1 0 -1

g -5 -1 -1 -2 -2 -1 -1

a -6 -2 -2 -2 -1 -2 0

t -7 -3 -3 -3 -2 0 -1

-1 1 0

-1

-1

Optimal alignment. Traceback
S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4 -2 -1 -1 -1 0 -1

g -5 -1 -1 -2 -2 -1 -1

a -6 -2 -2 -2 -1 -2 0

t -7 -3 -3 -3 -2 0 -1

Optimal alignment. Alignment
S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4 -2 -1 -1 -1 0 -1

g -5 -1 -1 -2 -2 -1 -1

a -6 -2 -2 -2 -1 -2 0

t -7 -3 -3 -3 -2 0 -1

S1 a t c t g - a t -

S2 - t - - g c a t a

General scoring schemes
COST(i-1,j) + gapCost

COST(i,j)=max COST(i,j-1) + gapCost

COST(i-1,j-1)+score(S1[i], S2[j])

Here the gapCost is the cost of aligning each character with a

gap, and it should be negative in order to penalize

score depends on the characters placed opposite to each

other. It is always positive for a pair of matching characters

The total score is a summative score of aligning the characters

in S1 and S2, maximized over all the combinations of possible

alignments

The scoring matrix

S1 a t c t g - a t -

S2 - t - - g c a t a

-1 1 -1 -1 1 -1 1 1 -1

Total score is -1

a c g t -

a 1 -1 -1 -1 -1

c -1 1 -1 -1 -1

g -1 -1 1 -1 -1

t -1 -1 -1 1 -1

- -1 -1 -1 -1 n/a

Our scoring matrix
For an alphabet Σ of size σ add one more artificial

character ‘-’.

Then the scoring matrix is a (σ+1)*(σ+1) table,

where for each character of Σ plus ‘-’ there is a cost

of aligning this character with each other character.

If an optimal alignment has been computed

according to a given scoring matrix, the total score

of an alignment is the sum of scores of the columns

of an alignment table

The sequence of mutations
S1 a t c t g - a t -

S2 - t - - c c a t a

This alignment suggests that S1 was transformed into S2 by the following

sequence of evolutionary events:

Deletion of nucleotide a

Deletion of nucleotides c and t

Substitution of nucleotide g by c

Insertion of nucleotide c

Deletion of nucleotide a

Since an optimal alignment is not unique, this sequence of mutations is only one of

many possible explanations

Point Mutations

⚫ Mutagenesis (causes of mutations)

⚫ Wrong base-pairing during replication - point

⚫ Damage from the environmental agents - point

⚫ Unequal crossing-over - macromutations

⚫ Insertions from mobile genes (transposons) –
macromutations

⚫ Point mutations can be as deleterious as the
macromutations, since they can break the reading frame
or introduce a stop codon in the middle of the reading
frame

YOU ARE THE TOP DOG

YOU ARE THE POP DOG

YOO UAR ETH ETO PDO

1 substitution

1 insertion

Mutations

⚫ Regulatory mechanisms of DNA repair try to undo the
mutations

⚫ Despite this, all cells possess a spontaneous
mutation rate defined as a number of mutations
which normally occur in each genome over a
particular time

⚫ This allows to infere the evolutionary distance between
species diverged from a common ancestor

Some mutations are more
likely than the others

More

likely

More

likely

The first scoring matrix for a real DNA

a c g t -

a 3 0 2 0 -1

c 0 3 0 2 -1

g 2 0 3 0 -1

t 0 2 0 3 -1

- -1 -1 -1 -1

A, G – 2-ring bases

T, C – 1-ring bases

Mutation which preserves rings number is much
more likely than changing the number of rings.

The score of exact matches: + 3

The score of transitions A->G, G->A and T->C, C->A: + 2

The score of any other mismatch (transversions) is 0

Gaps

⚫ The deletion or insertion of a single nucleotide is often
called indel (insertion/deletion)

⚫ In real molecular life, the insertions/ deletions occur in a
consecutive block, rather than at the level of single
nucleotides

⚫ The deletion/insertion of an entire substring occurs as a
single mutational event

⚫ The sequence of consecutive insertions/deletions is called a
gap

Scoring gaps

Each row represents a part of the genomic sequence of a
different strain of HIV viruses. 3 bottom rows represent mutated
genotypes with an ancestral sequence in the top row.

How many evolutionary events did really occur in each of these 3
cases?

Scoring gaps

⚫ An optimal alignment of two biological sequences is intended
to reflect the likelihood of mutational events.

⚫ Since a gap of more than 1 space can be created by a single
mutational event, the alignment model should reflect the
true distribution of indels in gaps, not merely the number
of indels in an alignment

Scoring gaps

⚫ Constant gap weights
⚫ Give score -1 for each gap independently of its length

⚫ Affine gap weights
⚫ Give score ρ + μ M for a gap of length M
⚫ ρ is comparatively large (for example, -1)
⚫ μ is comparatively small (for example -0.01)

In this way we count each gap as a single mutational event,
but we take into account that longer gaps are less likely to
occur than the shorter gaps

The recurrence relation for
affine gap weights

COST(i-1,j) -0.01

COST(i,j)=max

COST(i-1,j) - 1 - 0.01

COST(i,j-1) -0.01

COST(i,j)=max

COST(i,j-1) - 1 - 0.01

When we compute the cost of

moving from the top, we

distinguish 2 cases:

1. if the top character was

already a part of a gap, we

just penalize for the

extension of the gap.

2. Otherwise, we penalize for

the opening of a new gap of

length 1

The same when computing the

cost of moving from the left

to the current cell

The recurrence relation for
affine gap weights

COST(i,j) = COST(i-1,j-1) + score(S1[i], S2[j])

COST(i,j)

COST(i,j)=max COST(i,j)

COST(i,j)

When computing the

cost of moving from a

diagonal cell,

we account only for a

score of aligning

characters at current

positions S1[i] and S2[j],

as we did before

Then we take the max

of these 3 values

Optimal alignment with affine gap weights and
the DNA scoring matrix

S2 t g c a t a

S1 0

a

t

c

t

g

a

t

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

Optimal alignment with affine gap weights and the DNA
scoring matrix. Base condition

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01

t -1.02

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

Optimal alignment with affine gap weights and the DNA
scoring matrix. Row 1

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

Optimal alignment with affine gap weights and the DNA
scoring matrix. Row 2

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

Optimal alignment with affine gap weights and the DNA
scoring matrix. Row 3

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04

g -1.05

a -1.06

t -1.07

Optimal alignment with affine gap weights and the DNA
scoring matrix. Rows 4,5

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04 1.97 0.98 3.99 3.98 5.97 4.96

g -1.05 0.96 4.97 3.96 5.99 4.98 7.97

a -1.06

t -1.07

Optimal alignment with affine gap weights and the DNA
scoring matrix. Rows 6,7

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04 1.97 0.98 3.99 3.98 5.97 4.96

g -1.05 0.96 4.97 3.96 5.99 4.98 7.97

a -1.06 -0.14 3.96 4.97 6.96 5.99 7.98

t -1.07 1.94 2.95 5.96 5.95 9.96 8.95

Optimal alignment with affine gap weights and the DNA
scoring matrix. Row 7

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

char

3char

affine

Optimal alignment with affine gap weights and the DNA
scoring matrix. Traceback

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95

The global alignment

S1 a t c t g - a t -

S2 - - - t g c a t a

This alignment is called

global since it represents

an alignment with the best

overall cost for the entire

strings S1 and S2

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95

The local alignment

⚫ The similarity of biological strings rarely extends through
the entire length of these strings

⚫ Example: homeodomain of the homeobox genes is a very
conserved substring in overall very different sequences

⚫ How to detect the regions of local similarity?

The local alignment problem

⚫ Find a pair (S1[i1…i2], S2[j1…j2]) of substrings of S1 and S2 such
that the global alignment score between these substrings is
maximal among all possible pairs of substrings of S1 and S2

⚫ In terms of paths in edit graph: find the path with the
best cost between any pair of vertices

The solution to the local alignment problem.
Simple scoring example

1-1 0

-1

-1

When choosing the best move through

the next cell, take into account an

additional possibility to start from vertex

(0,0) with an overall 0-cost

This means that if the cost of some path

drops below 0, we abandon this path

and restart the cost to find a better local

path starting from the current position.

S2 t g c a t a

S1 0

a 0

t

c

t

g

a

t

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0

t 0

c 0

t 0

g 0

a 0

t 0

1-1 0

The local alignment.
Base condition

-1

-1

The local alignment.
Recurrence relation

0

COST(i-1,j) + gapCost

COST(i,j)=max COST(i,j-1) + gapCost

COST(i-1,j-1)+score(S1[i], S2[j])

The cost never drops below 0.

If it is negative, we start a new path from the same point with a cost 0

The local alignment. Row 1

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0

c 0

t 0

g 0

a 0

t 0

0

-1

-1 1 -1

The local alignment. Row 2

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0

t 0

g 0

a 0

t 0

0

-1

-1 1 -1

The local alignment. Row 3

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0

g 0

a 0

t 0

0

-1

-1 1 -1

The local alignment. Row 4

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0 1 0 0 0 1 0

g 0

a 0

t 0

0

-1

-1 1 -1

The local alignment. Row 5

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0 1 0 0 0 1 0

g 0 0 2 1 0 0 0

a 0

t 0

0

-1

-1 1 -1

The local alignment. Row 6

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0 1 0 0 0 1 0

g 0 0 2 1 0 0 0

a 0 0 1 1 2 1 1

t 0

0

-1

-1 1 -1

The local alignment. Row 7

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0 1 0 0 0 1 0

g 0 0 2 1 0 0 0

a 0 0 1 1 2 1 1

t 0 1 0 0 1 3 2

0

-1

-1 1 -1

Most similar local pattern

S2 t g c a t a

S1 0 0 0 0 0 0 0

a 0 0 0 0 1 0 1

t 0 1 0 0 0 2 0

c 0 0 0 1 0 1 1

t 0 1 0 0 0 1 0

g 0 0 2 1 0 0 0

a 0 0 1 1 2 1 1

t 0 1 0 0 1 3 2

S1 a t c t g - a t -

S2 - - - t g c a t a

Alignments:
Running time

⚫ O(NM)

⚫ If we want to find the regions of high similarity between a new
sequence of size M and all G genes of size N each in the
database, we need to perform O(MNG) operations

	Slide 1: Longest Common Subsequence. String Similarity and alignments.
	Slide 2: Recap: Useful abstraction: edit graph
	Slide 3: The cheapest path in the edit graph
	Slide 4: Motivation: sequence similarity
	Slide 5: Why compare biosequences
	Slide 6: Note of caution in interpreting sequence similarity
	Slide 7: Edit distance as a similarity metric
	Slide 8: Optimal alignment
	Slide 9: An optimal alignment is not unique
	Slide 10: The edit-distance based similarity metric
	Slide 11: The edit-distance based similarity metric: not enough
	Slide 12: The Longest Common Substring
	Slide 13: The Longest Common Subsequence
	Slide 14: Substring vs subsequence
	Slide 15: Longest Common Subsequence
	Slide 16: The LCS problem
	Slide 17: Edit Graph for LCS problem
	Slide 18: Dynamic Programming solution for LCS. Edit graph
	Slide 19: Dynamic Programming solution for LCS. Greedy path
	Slide 20: Base condition
	Slide 21: LCS. Recurrence relation
	Slide 22: Tabular computation. Row 1
	Slide 23: Tabular computation. Row 2
	Slide 24: Tabular computation. Row 3
	Slide 25: Tabular computation. Row 4
	Slide 26: Tabular computation. Rows 5,6
	Slide 27: Tabular computation. End
	Slide 28: LCS. Traceback
	Slide 29: LCS. Alignment
	Slide 30: The edit-distance based similarity metric: not enough
	Slide 31: The LCS-based similarity metric: not enough
	Slide 32: Basic optimal alignment scores
	Slide 33: Optimal alignment. Base condition
	Slide 34: Optimal alignment. Recurrence relation
	Slide 35: Optimal alignment. Row 1
	Slide 36: Optimal alignment. Row 2
	Slide 37: Optimal alignment. Row 3
	Slide 38: Optimal alignment. Row 4
	Slide 39: Optimal alignment. Row 5
	Slide 40: Optimal alignment. Rows 6,7
	Slide 41: Optimal alignment. Traceback
	Slide 42: Optimal alignment. Alignment
	Slide 43: General scoring schemes
	Slide 44: The scoring matrix
	Slide 45: The sequence of mutations
	Slide 46: Point Mutations
	Slide 47: Mutations
	Slide 48: Some mutations are more likely than the others
	Slide 49: The first scoring matrix for a real DNA
	Slide 50: Gaps
	Slide 51: Scoring gaps
	Slide 52: Scoring gaps
	Slide 53: Scoring gaps
	Slide 54: The recurrence relation for affine gap weights
	Slide 55: The recurrence relation for affine gap weights
	Slide 56: Optimal alignment with affine gap weights and the DNA scoring matrix
	Slide 57: Optimal alignment with affine gap weights and the DNA scoring matrix. Base condition
	Slide 58: Optimal alignment with affine gap weights and the DNA scoring matrix. Row 1
	Slide 59: Optimal alignment with affine gap weights and the DNA scoring matrix. Row 2
	Slide 60: Optimal alignment with affine gap weights and the DNA scoring matrix. Row 3
	Slide 61: Optimal alignment with affine gap weights and the DNA scoring matrix. Rows 4,5
	Slide 62: Optimal alignment with affine gap weights and the DNA scoring matrix. Rows 6,7
	Slide 63: Optimal alignment with affine gap weights and the DNA scoring matrix. Row 7
	Slide 64: Optimal alignment with affine gap weights and the DNA scoring matrix. Traceback
	Slide 65: The global alignment
	Slide 66: The local alignment
	Slide 67: The local alignment problem
	Slide 68: The solution to the local alignment problem. Simple scoring example
	Slide 69: The local alignment. Base condition -1
	Slide 70: The local alignment. Recurrence relation
	Slide 71: The local alignment. Row 1
	Slide 72: The local alignment. Row 2
	Slide 73: The local alignment. Row 3
	Slide 74: The local alignment. Row 4
	Slide 75: The local alignment. Row 5
	Slide 76: The local alignment. Row 6
	Slide 77: The local alignment. Row 7
	Slide 78: Most similar local pattern
	Slide 79: Alignments: Running time

