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BOOLEAN-VALUED RANDOM 
VARIABLES



Discrete Boolean random variables

A is a Boolean-valued random variable if A denotes an event, and 
there is some degree of uncertainty as to whether A occurs or 
not.

Examples:

● P = True: The US president in 2023 will be male

● P=¬True: The US president will not be a male

● H = True: You wake up tomorrow with a headache

● H=¬True: No headache



Discrete probabilities

We write P(A=a), or P(A=true) or simple P(A) as “the fraction of 
possible worlds where A is true”

P(A) is the 
proportion of red 
blocks out of the 
entire universe

World in which A=a

World in which A=¬a

Event space of 
all possible 
worlds

Its area=1.0

6

10



Axioms

I. 0<= P(A=a)<=1.0

II. P(A or B)=P(A)+P(B)-P(A and B)

III. P(A)+P(¬A)=1.0

Anot A

B

ABA



Theorem 1

P(¬A )=1-P(A)

Anot A



Theorem 2

P(A)=P(A ∩ B) + P(A ∩ ¬B) 

A ∩ B

A ∩ ¬B

BA



Conditional probability: definition

● P(A|B) = fraction of worlds in which A is true out of all the worlds where 
B is true 

CP definition: P(A|B)= P(A ∩ B) / P(B)

A ∩ B

BA



Conditional probability: definition

● P(A|B) = fraction of worlds in which A is true out of all the worlds where 
B is true 

P (¬A|B) = P(¬A ∩ B) / P(B)

¬A 
∩ B

BA



Conditional probability: definition

● P(B|A) = fraction of worlds in which B is true out of all the worlds where 
A is true 

P(B|A)= P(A ∩ B) / P(A)

A ∩ B

BA

P(A ∩ B) = 4/60
P(A) = 20/60
P(B|A) = 4/60 : 20/60 = 0.2



Two random variables A and B are called mutually independent if 
P(A|B) = P(A):

P(A|B) = P(A) 15/30 = 30/60

P(¬ A|B) = P(¬ A) 15/30 = 30/60

P(A| ¬ B) = P(A) 15/30 = 30/60

P(¬A| ¬ B) = P(A) 15/30 = 30/60

Knowing that B is true (or false) does not change the probability of A

Probabilistic independence

A ∩ B

BA



A is independent of B: knowing that B is true (or 
false) does not change the probability of A:

P(A|B) = P(A)

A and B are mutually exclusive – not independent 
variables: if A is true then B is false, if A is false 
then B is true with probability P(B|¬A)

P(A ∩ B)=0

Independent and mutually exclusive events

A

B

A

B



Probability of two independent events

From the definition of conditional probabilities:

P(A|B)= P(A ∩ B) / P(B)

we can compute P(A ∩ B) – that both events happened together:

P(A ∩ B) =P(A|B)P(B)

If A and B are independent that becomes:

P(A ∩ B) =P(A)P(B)



A and ¬A are mutually exclusive, so by 
Axiom II:

P(A or B)=P(A)+P(B)-P(A and B)

And for A or ¬A :

P(A or ¬A)=P(A ) + P(¬A) = 1

Probability of mutually exclusive events

Anot A



Probabilistic inductive reasoning

• Critical thinking: always have good reasons for your beliefs

• Some reasons may be 100% true - some only probable

• Inductive reasoning with probabilities: you always have a 
chance of being wrong

http://www.starwars.com/video/never-tell-me-the-odds

http://www.starwars.com/video/never-tell-me-the-odds


I believe that John will not be at the party

John will not be at the party

What are the odds?

yes no

In the absence of facts



I believe that John will not be at the party

John will not be at the party

I do not like John

What are the odds?

yes no

Invalid (illogical) reasoning



I believe that John will not be at the party

John will not be at the party

John is very shyI do not like John

What are the odds given this fact?

yes no

Probabilistic reasoning: valid fact (evidence)



I believe that John will not be at the party

John will not be at the party

John is in Beijing John is very shyI do not like John

What are the odds?

yes no

More facts – update your beliefs



Bayesian beliefs

• How do we judge that something is 
true?

• Can mathematics help make 
judgments more accurate?

• Bayes: our believes should be 
updated as new evidence becomes 
available

1701 - 1761



Bayes’ method for updating beliefs

• There are 2 mutually exclusive events: A and not A (B) which 
you believe occur with probabilities P(A) and P(B). Estimation 
P(A):P(B) represents odds of A vs. B. 

• Collect evidence data E.

• Re-estimate P(A|E):P(B|E) and update your beliefs.



Two random events (not independent) happen 
at the same time – P(A and B)

1.0

P(A)

P(B|A) P(A and B)

P(¬B|A) P(A and ¬B)

P(¬A)

P(B|¬A) P(¬A and B)

P(¬B|¬A) P(¬A and ¬ B)

Possible event combinations  when we know the 
outcome of event A: 
P(A)=1/2, P(B|A)=1/12 and P(A and B)=1/2*1/12 = 
1/24

1.0

P(B)

P(A|B) P(A and B)

P(¬A|B) P(¬A and B)

P(¬B)

P(A|¬B) P(A and ¬B)

P(¬A|¬B) P(¬A and ¬ B)

B
A

Possible event combinations  when we know 
the outcome of event B: 
P(B)=1/6, P(A|B)=1/4 and P(B and A)=1/6*1/4 
= 1/24

B
A

But in both cases P(A and B) is the same: orange area in the diagram  

P(A) = 1/2, P(B) = 1/6 



Bayes theorem

1.0

P(A)

P(B|A) P(A and B)

P(¬B|A) P(A and ¬B)

P(¬A)

P(B|¬A) P(¬A and B)

P(¬B|¬A) P(¬A and ¬ B)

1.0

P(B)

P(A|B) P(A and B)

P(¬A|B) P(¬A and B)

P(¬B)

P(A|¬B) P(A and ¬B)

P(¬A|¬B) P(¬A and ¬ B)

P(A and B)=P(A)*P(B|A)

P(A and B)=P(B)*P(A|B)

P(A)*P(B|A)=P(B)*P(A|B)

P(¬A)*P(B|¬A)=P(B)*P(¬A|B)



Bayes theorem

P(A|E) = P(E|A)P(A)/P(E)

P(A|E) = P(A ∩ E)/ P(E)

P(E|A) = P(A ∩ E)/ P(A)

Bayes theorem (formalized by Laplace)

Probability of 

event A given 

evidence

Probability of 

evidence given 
event A

Probability of event 

A without evidence 

(prior probability)

Inverse probabilities are typically easier to ascertain 



Bayes method with probabilities

• There are 2 events: A and not A (B) which you believe occur 
with probabilities P(A) and P(B). Estimation P(A):P(B) 
represents odds of A vs. B. 

• Collect evidence data E.

• Re-estimate P(A|E):P(B|E) and update your beliefs.

P(A|E) P(E|A)P(A)/P(E)

The updated odds are computed as:

P(B|E)        P(E|B)P(B)/P(E)
=



Bayes’ method with probabilities

• There are 2 events: A and not A (B) which you believe occur 
with probabilities P(A) and P(B). Estimation P(A):P(B) 
represents odds of A vs. B. 

• Collect evidence data E.

• Re-estimate P(A|E):P(B|E) and update your beliefs.

P(A|E) P(E|A)P(A)

or simply

P(B|E)        P(E|B)P(B)
=



Example: 
hit-and-run (fictitious)

• Taxicab company has 75 blue cabs (B) 
and 15 green cabs (G)

• At night when there are no other cars 
on the street: hit-and-run episode

• Question: what is more probable: 

B or G

?

15

15

15

15

15

Adopted from: The numbers behind NUMB3RS: solving crime with mathematics by Devlin and Lorden.

15



What is more probable: 
B or G

15

15 15

15 15

15

blue green

P(B):P(G)=5:1



New evidence

• Witness: “I saw a green cab”: EG

• What is the probability that the witness really saw a green 
car?

• Witness is tested at night conditions: identifies correct color 4 
times out of 5

• The eyewitness test shows:

P(EG | G)= 4/5  (correctly identified)

P(EG | B)= 1/5  (incorrectly identified)



Updating the odds

• In our case we want to compare:

the car was G given a witness testimony EG: P(G|EG)

vs.

the car was B given a witness testimony EG: P(B|EG)

Note: There is no way to know which of 2 was true, we just 
estimate



Back to hit-and-run

All cabs were on the streets: 

Prior odds ratio: P(B) : P(G) = 5/1

15

15 15

15 15

15

blue green

P(B|EG) P(B)*P(EG|B)   
P(G|EG) P(G)*P(EG|G)

=

P(EG | G)= 4/5  (correctly identified)

P(EG | B)= 1/5  (incorrectly identified)

Updated odds ratio:  



New odds

15 12

blue green

P(B|EG) P(B)*P(EG|B)   
P(G|EG) P(G)*P(EG|G)

=

Still 5:4 odds that the car was B!



Hit-and-run: full calculation

P(B) =5/6,  P(G) = 1/6 

P(EG | G)= 4/5  P(EG | B)= 1/5  

• Probability that car was green given the evidence EG:

P(G|EG)= P(G)* P(EG|G) /P(EG) = [1/6 * 4/5] / P(EG) =4/30P(EG)   

//- 4 parts of 30P(XG)

• Probability that car was blue given the evidence XG:

P(B|EG) = P(B)* P(EG|B) /P(EG) = [5/6 * 1/5] /P(EG) =5/30P(EG)  

//- 5 parts of 30P(XG)



Bayes in ‘real’ life. Example 

HEADACHE

FLU

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

P(F|H) =?



Bayes in ‘real’ life. Example

HEADACHE

FLU

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

P(F|H) =P(H|F)P(F)/P(H)
=1/2*1/40 *10=1/8



Bayes in ‘real’ life. Activity

Someone draws an envelope at random and offers to sell it to you.
How much should you pay?
The probability to win is 1:1. Pay no more than 50c.

WIN envelope LOSE envelope

$1.00



Bayes in ‘real’ life. Activity

Variant: before deciding, you are allowed to see one bead 
drawn from the envelope.
Suppose it’s black: How much should you pay?
Suppose it’s red: How much should you pay?

WIN envelope LOSE envelope

$1.00



When you want to:

• Determine the probability of having a medical 
condition after positive test results

• Find out a probable outcome of political elections

• Improve machine-learning performance

• Even to “prove” or “disprove” the existence of God

Use Bayesian Reasoning

http://www.scielo.br/pdf/csp/v31n1/0102-311X-csp-31-01-00026.pdf
http://www.scielo.br/pdf/csp/v31n1/0102-311X-csp-31-01-00026.pdf
http://journals.sagepub.com/doi/abs/10.1177/2158244015579724
http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf
https://www.amazon.com/Probability-God-Simple-Calculation-Ultimate/dp/1400054788
https://www.youtube.com/watch?v=NFGTu-OxFpU


Summary: Bayes Rule for updating beliefs

• We want to compare P(A|B) and P (¬A|B), i.e. given evidence B 
what probability is higher: that A occurred or that ¬A occurred? 

• We know P(A) and P(¬A) – prior probabilities

• We know P(B|A) and P(B|¬A)

• From Bayes’ theorem:

P(A|B) = P(A)*P(B|A) / P(B)

P(¬A|B) = P(¬A)*P(B|¬A) / P(B)

P(A|B)=P(A)*P(B|A)/P(B)

P(¬A|B)=P(¬A)*P(B|¬A)/P(B)



Log-odds ratio

• Note, that we do not have to know P(b) in order to make predictions: we 

just find the ratio of 2 mutually exclusive probabilities 

P(A|B)=P(B|A)P(A)/P(B)

P(¬A|B)=P(B|¬A)P(¬A)/P(B)

• Instead of finding ratio, to avoid underflow, use log:

P(A|B)=P(B|A)P(A)

P(¬A|B)=P(B|¬A)P(¬A)

If positive then A is more probable, if negative then ¬A is more probable

log
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