Primer: conditional probabilities

Lecture 7.1
by Marina Barsky

BOOLEAN-VALUED RANDOM VARIABLES

Discrete Boolean random variables

A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs or not.

Examples:

- $P=$ True: The US president in 2023 will be male
- $\mathrm{P}=-$ True: The US president will not be a male
- $\mathrm{H}=$ True: You wake up tomorrow with a headache
- $\mathrm{H}=-$ True: No headache

Discrete probabilities

We write $P(A=a)$, or $P(A=$ true) or simple $P(A)$ as "the fraction of possible worlds where A is true"

World in which $\mathrm{A}=\neg \mathrm{a}$

Axioms
l. $0<=P(A=a)<=1.0$

II. $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

III. $P(A)+P(\neg A)=1.0$

Theorem 1
$P(\neg A)=1-P(A)$

Theorem 2

$$
P(A)=P(A \cap B)+P(A \cap \neg B)
$$

Conditional probability: definition

- $P(A \mid B)=$ fraction of worlds in which A is true out of all the worlds where B is true

A B

$C P$ definition: $P(A \mid B)=P(A \cap B) / P(B)$

Conditional probability: definition

- $P(A \mid B)=$ fraction of worlds in which A is true out of all the worlds where B is true

> A B
> $P(\neg A \mid B)=P(\neg A \cap B) / P(B)$

Conditional probability: definition

- $P(B \mid A)=$ fraction of worlds in which B is true out of all the worlds where A is true

$P(B \mid A)=P(A \cap B) / P(A)$

A B

$$
\begin{aligned}
& P(A \cap B)=4 / 60 \\
& P(A)=20 / 60 \\
& P(B \mid A)=4 / 60: 20 / 60=0.2
\end{aligned}
$$

Probabilistic independence

Two random variables A and B are called mutually independent if

$$
\begin{array}{ll}
P(A \mid B)=P(A): & \\
P(A \mid B)=P(A) & 15 / 30=30 / 60 \\
P(\neg A \mid B)=P(\neg A) & 15 / 30=30 / 60 \\
P(A \mid \neg B)=P(A) & 15 / 30=30 / 60 \\
P(\neg A \mid \neg B)=P(A) & 15 / 30=30 / 60
\end{array}
$$

Knowing that B is true (or false) does not change the probability of A

Independent and mutually exclusive events

A is independent of B : knowing that B is true (or false) does not change the probability of A :

$$
P(A \mid B)=P(A)
$$

A and B are mutually exclusive - not independent variables: if A is true then B is false, if A is false then B is true with probability $P(B \mid \neg A)$

$$
P(A \cap B)=0
$$

Probability of two independent events

From the definition of conditional probabilities:

$$
P(A \mid B)=P(A \cap B) / P(B)
$$

we can compute $P(A \cap B)$ - that both events happened together:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

If A and B are independent that becomes:

$$
P(A \cap B)=P(A) P(B)
$$

Probability of mutually exclusive events

A and \neg A are mutually exclusive, so by Axiom II:
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
And for A or $\neg A$:
$P(A$ or $\neg A)=P(A)+P(\neg A)=1$

Probabilistic inductive reasoning

- Critical thinking: always have good reasons for your beliefs
- Some reasons may be 100% true - some only probable
- Inductive reasoning with probabilities: you always have a chance of being wrong

I believe that John will not be at the party

In the absence of facts

John will not be at the party

What are the odds?

I believe that John will not be at the party

Invalid (illogical) reasoning

I do not like John

John will not be at the party

What are the odds?

I believe that John will not be at the party

Probabilistic reasoning: valid fact (evidence)

I do not like John
John is very shy

John will not be at the party

What are the odds given this fact?

I believe that John will not be at the party

More facts - update your beliefs

I do not like John John is in Beijing John is very shy

John will not be at the party

What are the odds?

Bayesian beliefs

- How do we judge that something is true?
- Can mathematics help make judgments more accurate?
- Bayes: our believes should be updated as new evidence becomes available

J. Bayes.

1701-1761

Bayes' method for updating beliefs

- There are 2 mutually exclusive events: A and $\operatorname{not} A(B)$ which you believe occur with probabilities $P(A)$ and $P(B)$. Estimation $\mathrm{P}(\mathrm{A}): \mathrm{P}(\mathrm{B})$ represents odds of A vs. B .
- Collect evidence data \mathbf{E}.
- Re-estimate $\mathrm{P}(\mathrm{A} \mid \mathrm{E}): \mathrm{P}(\mathrm{B} \mid \mathrm{E})$ and update your beliefs.

$$
P(A)=1 / 2, P(B)=1 / 6
$$

Two random events (not independent) happen at the same time $-P(A$ and $B)$
 1/24

Possible event combinations when we know the outcome of event B :
$P(B)=1 / 6, P(A \mid B)=1 / 4$ and $P(B$ and $A)=1 / 6 * 1 / 4$
$=1 / 24$
But in both cases $P(A$ and $B)$ is the same: orange area in the diagram

Bayes theorem

$P(A) * P(B \mid A)=P(B) * P(A \mid B)$

$$
P(\neg A) * P(B \mid \neg A)=P(B) * P(\neg A \mid B)
$$

Bayes theorem

Bayes theorem (formalized by Laplace)

$$
\begin{aligned}
& P(A \mid E)=P(A \cap E) / P(E) \\
& P(E \mid A)=P(A \cap E) / P(A)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Probability of } \\
\text { event } A \text { given } \\
\text { evidence }
\end{array} \\
& P\left(\begin{array}{c}
\text { Probability of } \\
\text { evidence given } \\
\text { event } A
\end{array}\right. \\
& P(E)=P(\overleftarrow{A} \mid A) P(A) / P(E)
\end{aligned}
$$

Probability of event A without evidence (prior probability)

Inverse probabilities are typically easier to ascertain

Bayes method with probabilities

- There are 2 events: A and not $A(B)$ which you believe occur with probabilities $P(A)$ and $P(B)$. Estimation $P(A): P(B)$ represents odds of A vs. B.
- Collect evidence data E.
- Re-estimate $P(A \mid E): P(B \mid E)$ and update your beliefs.

The updated odds are computed as:

$$
\frac{P(A \mid E)}{P(B \mid E)}=\frac{P(E \mid A) P(A) / P(E)}{P(E \mid B) P(B) / P(E)}
$$

Bayes' method with probabilities

- There are 2 events: A and not $A(B)$ which you believe occur with probabilities $P(A)$ and $P(B)$. Estimation $P(A): P(B)$ represents odds of A vs. B.
- Collect evidence data E.
- Re-estimate $\mathrm{P}(\mathrm{A} \mid \mathrm{E}): \mathrm{P}(\mathrm{B} \mid \mathrm{E})$ and update your beliefs.
or simply

$$
\frac{P(A \mid E)}{P(B \mid E)}=\frac{P(E \mid A) P(A)}{P(E \mid B) P(B)}
$$

Example: hit-and-run (fictitious)

- Taxicab company has 75 blue cabs (B) and 15 green cabs (G)
- At night when there are no other cars on the street: hit-and-run episode
- Question: what is more probable:
B or G

What is more probable: B or G

$$
P(B): P(G)=5: 1
$$

New evidence

- Witness: "I saw a green cab": E_{G}
- What is the probability that the witness really saw a green car?
- Witness is tested at night conditions: identifies correct color 4 times out of 5
- The eyewitness test shows:
$P\left(E_{G} \mid G\right)=4 / 5$ (correctly identified)
$P\left(E_{G} \mid B\right)=1 / 5$ (incorrectly identified)

Updating the odds

- In our case we want to compare:
the car was G given a witness testimony $E_{G}: P\left(G \mid E_{G}\right)$ VS.
the car was B given a witness testimony $E_{G}: P\left(B \mid E_{G}\right)$

Note: There is no way to know which of 2 was true, we just estimate

Back to hit-and-run

All cabs were on the streets:
Prior odds ratio: $P(B): P(G)=5 / 1$
Updated odds ratio: $\frac{P\left(B \mid E_{G}\right)}{P\left(G \mid E_{G}\right)}=\frac{P(B) * P\left(E_{G} \mid B\right)}{P(G) * P\left(E_{G} \mid G\right)}$

$P\left(E_{G} \mid G\right)=4 / 5$ (correctly identified)
$P\left(E_{G} \mid B\right)=1 / 5$ (incorrectly identified)

New odds

$$
\frac{P\left(B \mid E_{G}\right)}{P\left(G \mid E_{G}\right)}=\frac{P(B) * P\left(E_{G} \mid B\right)}{P(G) * P\left(E_{G} \mid G\right)}
$$

Still 5:4 odds that the car was B!

Hit-and-run: full calculation

$$
\begin{aligned}
& P(B)=5 / 6, P(G)=1 / 6 \\
& P\left(E_{G} \mid G\right)=4 / 5 \quad P\left(E_{G} \mid B\right)=1 / 5
\end{aligned}
$$

- Probability that car was green given the evidence E_{G} : $P\left(G \mid E_{G}\right)=P(G) * P\left(E_{G} \mid G\right) / P\left(E_{G}\right)=[1 / 6 * 4 / 5] / P\left(E_{G}\right) \quad=4 / 30 P\left(E_{G}\right)$ //- 4 parts of $30 \mathrm{P}\left(\mathrm{X}_{\mathrm{G}}\right)$
- Probability that car was blue given the evidence X_{G} : $P\left(B \mid E_{G}\right)=P(B) * P\left(E_{G} \mid B\right) / P\left(E_{G}\right)=[5 / 6 * 1 / 5] / P\left(E_{G}\right)=5 / 30 P\left(E_{G}\right)$ //- 5 parts of $30 \mathrm{P}\left(\mathrm{X}_{\mathrm{G}}\right)$

Bayes in 'real' life. Example

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \mid H)=$?

Bayes in 'real' life. Example

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \mid H)=P(H \mid F) P(F) / P(H)$
$=1 / 2 * 1 / 40 * 10=1 / 8$

Bayes in 'real' life. Activity

WIN envelope

LOSE envelope

Someone draws an envelope at random and offers to sell it to you. How much should you pay?
The probability to win is 1:1. Pay no more than 50c.

Bayes in 'real' life. Activity

WIN envelope

LOSE envelope

Variant: before deciding, you are allowed to see one bead drawn from the envelope.
Suppose it's black: How much should you pay?
Suppose it's red: How much should you pay?

When you want to:

- Determine the probability of having a medical condition after positive test results
- Find out a probable outcome of political elections
- Improve machine-learning performance
- Even to "prove" or "disprove" the existence of God

Use Bayesian Reasoning

Summary: Bayes Rule for updating beliefs

$P(A \mid B)=P(A) * P(B \mid A) / P(B)$

$$
P(\neg A \mid B)=P(\neg A) * P(B \mid \neg A) / P(B)
$$

- We want to compare $P(A \mid B)$ and $P(\neg A \mid B)$, i.e. given evidence B what probability is higher: that A occurred or that $\neg A$ occurred?
- We know $P(A)$ and $P(\neg A)$ - prior probabilities
- We know $P(B \mid A)$ and $P(B \mid \neg A)$
- From Bayes' theorem:

$$
\begin{gathered}
P(A \mid B)=P(A)^{*} P(B \mid A) / P(B) \\
P(\neg A \mid B)=P(\neg A)^{*} P(B \mid \neg A) / P(B)
\end{gathered}
$$

Log-odds ratio

- Note, that we do not have to know $\mathrm{P}(\mathrm{b})$ in order to make predictions: we just find the ratio of 2 mutually exclusive probabilities

$$
\frac{P(A \mid B)=P(B \mid A) P(A) / P(B)}{P(\neg A \mid B)=P(B \mid \neg A) P(\neg A) / P(B)}
$$

- Instead of finding ratio, to avoid underflow, use log:
$\log \quad P(A \mid B)=P(B \mid A) P(A)$

$$
P(\neg A \mid B)=P(B \mid-A) P(\neg A)
$$

If positive then A is more probable, if negative then $\neg A$ is more probable

