
Hidden Markov Models

Lecture 7.3

by Marina Barsky

See sample code in casino.py

https://drive.google.com/file/d/1aTbb8kWnDOAcrrzzT_6KsLc_1hF9SMCJ/view?usp=sharing


The honest and the dishonest casino

1/6 1/10

1/2

Choose L with P(L) = 0.01

P(F) = 0.99 P(L) = 0.01

Prior probabilities – before we see any evidence (sequence)

We assume that: 



Recap: the odds given evidence (sequence)

• P (W1|evidence) = P(evidence|W1)*P(W1)/P(evidence)

• P (W2|evidence) = P(evidence|W2)*P(W2)/P(evidence)

• To compare P (W1|evidence)  vs P (W2|evidence) :

P (W1|evidence) / P (W2|evidence)

• Or to avoid underflow:

log [P (W1|evidence) / P (W2|evidence)]

• Log odds ratio = log  [P(evidence|W1)*P(W1)/ P(evidence|W2)*P(W2)]

• If > 0 – first is more likely, if < 0 – second is more likely



Bayes theorem for Markov sequences

• Pick a die at random - and roll

• We get 3 consecutive sixes: ‘666’

• Is the die loaded? What is the probability?

• We want to know P(L|3 sixes)

• From Bayes theorem:

P(L|3 sixes) = P(3 sixes|L)*P(L)/P(3 sixes)

P(F|3 sixes) = P(3 sixes|F)*P(F)/P(3 sixes)

P(3 sixes) = P(3 sixes|F)*P(F) + P(3 sixes|L) *P(L) = 0.0058

• P (L|3 sixes) = ( 0.5*0.5*0.5 * 0.01) /0.0058 = 0.215

• P(F|3 sixes) = (1/6)*(1/6)*(1/6)*0.99 / 0.0058 = 0.785

The sequence was generated either by fair or by loaded die

Not enough evidence to conclude that the die was Loaded



If two models are equally likely, we can use the 
conditional  probabilities for discrimination

We can just compare P(M | L) and P(M | F)

L

F

Sequence M



We can use conditional probabilities for
discrimination

F L

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

P(M | L)=0.5*0.5*0.5*0.1*0.5*0.1=0.000625 = 6.25*10-4

P(M | F)=0.17*0.17*0.17*0.17*0.17*0.17=0.000024 = 2.4 *10-5

How confident we are that this sequence was produced by a loaded die?  P(M and 

model L)/ P(M and model F)=25.89

Or log [P(M I model L)/ P(M | F)]=1.4

OR

L

F

M

Log-odds ratio



The occasionally dishonest casino

P=1/6 P=1/10

P=1/2

P=1/6

P=3/5



Sequence generated by a model of an 
occasionally dishonest casino



Markov chains: recap

• The system can be in a finite number of states

• Transition from state to state is not predetermined, but 
rather is specified in terms of probabilities

• The transition probabilities depend only on the immediate 
history

• The process of transitions from state to state is called a 
Markov process or a Markov chain



• While in a particular state, system emits a symbol mk from a 
finite alphabet with the probability ei(mk),  called an 
emission probability of symbol mk in state  Wi

• If we construct the schedule of observation times, and at each 
point in time record the symbols emitted  by a system along 
with the state, we obtain 2 sequences: 

• the sequence of emitted symbols which is called an 
observed sequence M

• the  sequence of states π which is called a path through  
system states

States can also behave probabilistically



Terminology

P=1/6 P=1/10

P=1/2

P=1/6

P=3/5

P=5/6 P=2/5

Transition probabilities



Terminology

P=1/6 P=1/10

P=1/2

P=1/6

P=3/5

P=5/6 P=2/5

Emission probabilities



Transition and emission diagram

eF(1)=0.17

eF(2)=0.17

eF(3)=0.17

eF(4)=0.17

eF(5)=0.17

eF(6)=0.17

eL(1)=0.10

eL(2)=0.10

eL(3)=0.10

eL(4)=0.10

eL(5)=0.10

eL(6)=0.50

State F (fair die) State L (loaded die)

aFF=0.83 aLL=0.40

aFL=0.17

aLF=0.60



Tabular parameters

F L

F 0.83 0.17

L 0.60 0.40

F L

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

The state transition

matrix

Emission probabilities



Hidden Markov Model (HMM)

States are unknown (hidden)



3 types of questions to HMM

1. Given a sequence of N observations, what is the 
probability of obtaining this sequence given a particular 
state path (Sequence probability)

2. Given a sequence of N observations, what is the most 
probable sequence of the underlying states (Most 
probable path)

3. Given a sequence of N observations, what is the probability 
that the i-th observation was produced when the system 
was in state Wj



Question 1

Given a sequence and a path, what is the 
sequence probability?

• The probability P(M| π) is the conditional  probability that 
sequence M was generated  while system was moving from 
state to state according to π



A suggested path

P(M and π)=0.17 * 0.83 * 0.17 * 0.17 * 0.50 * 0.60 * 0.50=0.0006

• Note that this is not P(π | M) 

• Pick a path π

• Calculate a joint probability of π and M

The probability that the sequence was 
generated following a path π

F L

F 0.83 0.17

L 0.60 0.40

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50



A suggested path

P(M and π)=0.17 * 0.83 * 0.17 * 0.17 * 0.50 * 0.60 * 0.50=0.0006

• Repeat for each possible path and choose a  path which maximizes

P(π and M). 

• Total 2N calculations (for 2 states and sequence of length N)

• Pick a path π

• Calculate a joint probability of π and M

The probability that the sequence was generated 
following a path π when π is unknown (hidden) 

F L

F 0.83 0.17

L 0.60 0.40

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50



Question 2

Given only a sequence of observations, what is 
the most probable path of states?

Viterbi algorithm: dynamic programming



Dynamic programming. Initialization – the 
probability of choosing a die for the first time

• Add to the system a start state and parameters – the probabilities 
of  choosing a fair or a loaded die in the beginning of a game

eF(1)=0.17

eF(2)=0.17

eF(3)=0.17

eF(4)=0.17

eF(5)=0.17

Fe (6)=0.17

eL(1)=0.10

eL(2)=0.10

eL(3)=0.10

eL(4)=0.10

eL(5)=0.10

Le (6)=0.50

State F (fair die) State L (loaded die)

aFF=0.83 aLL=0.40

aFL=0.17

aLF=0.60

Start

a0F=0.9

a0L=0.1



Start

Dynamic programming.  
Initialization

P(πF,1)=a0F*eF(M[1])

P(πL,1)=a0L*eL(M[1])

The graph of a process.



Dynamic programming. 
Recurrence relation

Start

We are looking for a path which maximizes the  probability of sequence M



Dynamic programming.  
Recurrence relation

Start

If we know the best paths ending at states L and F in position 4, we can  

choose max between them and terminate the program

End

Choose max  

(cost (NF),

cost (NL))



Dynamic programming. Recurrence relation

Start

This can be repeated for each combination of a position in a sequence of  

observations and one of 2 states

End

P(πF,i+1)=max {P(πF,i)*aFF, P(πL,i)*aLF } * eF(M[i+1])

P(πL,i+1)=max {P(πL,i)*aLL, P(πF,i)*aFL} * eL (M[i+1])  

P(π*)=max {P(πF,N), P(πL,N)}

Note: the probabilities are multiplied, not added up



Start
End

We have reached position i=1 with the probability 0.9*0.17 of  

going to the F state and emitting 3, and with probability  

0.1*0.10 of going to the L-state and emitting 3. There are no  

other possibilities

0.15

0.01

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

F L

F 0.83 0.17

L 0.60 0.40

0 0.90 0.10

Viterbi algorithm. Demo 1



Viterbi algorithm. Demo 2

Start
End

We can reach position i=2 (F-state) with the probability  

0.15*0.83*0.17 or with probability 0.01*0.6*0.10. We chose the max  

between these two: 0.15*0.83*0.17=0.002

The L-state in position i=2 can be reached with probability  

0.01*0.40*0.10 or 0.15*0.17*0.10=0.0026. The second is larger so  

we choose it.

0.01

0.15 0.02

0.0026

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

F L

F 0.83 0.17

L 0.60 0.40

0 0.90 0.10



Viterbi algorithm. Demo 3

Start
End

We can reach position i=3 (F-state) with the probability  

0.02*0.83*0.17=0.0028 or with probability  

0.0026*0.4*0.17=0.00018. We chose the max between these  

two: 0.02*0.83*0.17=0.0028

The L-state in position i=3 can be reached with probability  

0.02*0.17*0.50=0.0017 or 0. 0026*0.4*0.5=0.0017. We chose the

second - arbitrarily

0.02

0.0026

0.0028

0.0017

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

F L

F 0.83 0.17

L 0.60 0.40

0 0.90 0.10

0.15

0.01



W  

0

0.0017*0.6*0.17=0.00017. We chose the max between these two:  

0.0028*0.83*0.17=0.0004

The L-state in position i=4 can be reached with probability  

0.0017*0.40*0.50=0.00034 or 0.0028*0.17*0.5 =0.00024. We

chose the max: 0.0017*0.40*0.50=0.00034

Viterbi algorithm. Demo 4

0.0028 0.0004

F L

1 0.17 0.10

Start 0.0017 0.0003
End 2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

F L

F 0.83 0.17

e can reach position i=4 (F-state) with the probability L 0.60 0.40

.0028*0.83*0.17=0.0004 or with probability 0 0.90 0.10

End

0.02

0.0026

0.15

0.01



Viterbi algorithm. Demo - end

Start
End

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

F L

F 0.83 0.17

L 0.60 0.40

0 0.90 0.10

Choose max: 0.0004. So, the most probable sequence of states:  

FFFF

Evidently, it is not enough to have 2 sixes in a row in order to be able to spot the  

loaded die.

0.0004

0.0003



Viterbi algorithm. Log-values

P(πF,1)=a0F*eF(M[1]) P(πL,1)= a0L*eL(M[1])

P(πF,i+1)=max { P(πF,i)*aFF, P(πL,I)*aLF }* eF(M[i+1])

P(πL,i+1)=max {P(πL,i)*aLL, P(πF,i)*aFL} *eL (M[i+1])  

P(π*)=max {P(πF,N), P(πL,N)}

In order to avoid the underflow errors, in practice  

log is used instead of the actual probabilities

P(πF,1)=log a0F+ log eF(M[1]) P(πL,1)= log a0L+ log eL(M[1])

P(πF,i+1)=max {P(πF,i)+ log aFF, P(πL,I)+ log aLF }+ log eF(M[i+1])

P(πL,i+1)=max {P(πL,i)+ log aLL, P(πF,i)+ log aFL} + log eL (M[i+1])

P(π*)=max {P(πF,N), P(πL,N)}



How good is the prediction

delay

Missing  

short  

stretches

Overall, an underlying hidden pathway explains the given  sequence well 

– the path explanation obtained with Viterbi is good



We can now answer these questions:

• What is the probability that a given sequence  of observations came 

from a particular HMM

• Where in the sequence the model has probably changed



Activity. Discrimination by  probability

• Markov models for the honest and for the dishonest casino are  

presented below:

e(Heads)=1/2

e(Tails)=1/2

e(Heads)=3/4

e(Tails)=1/4

Fair coin Biased coin

Given that it is equally probable to choose F or L, find out which coin

has most probably produced the following sequence of observations:

HHHTTHT



When the heads point to the biased coin?

• For sequence M of length N with k heads:

P(M | fair coin)=Πn(1/2) * P(F)/P(M)~1/2N

P (M | biased coin)= Πk(3/4) *ΠN-k(1/4)*P(B)/P(M)~3k/4k*1/4N-k

• For this simple example, we can compute how many 

heads out of N are needed to conclude that the coin is 

biased:

• when  P(M and fair coin) < P (M and biased coin) ?

1/2N<3k/4N

1<3k/2N

2N <3k

Nlog2<klog3  
k > (log2/log3)*N 
k > 0.63 N



Activity

• Using the Viterbi algorithm, find the most probable path of states 

for the following sequence given the following HMM.

e(Heads)=1/2  

e(Tails)=1/2

e(Heads)=3/4  

e(Tails)=1/4

Fair coin Biased coin

1/5 S 4/5

Observed sequence: HTTHHH

3/4

1/4 1/2

1/2



Building a Hidden Markov Model

• 2 parts:

• Model topology: what states there are and how  are they

connected

• The assignment of parameter values: the  transition 

and emission probabilities



Parameter estimation

• We are given a set of training sequences

• 2 cases:

• When the states in the training sequences are known

afrom,to=countfrom,to/Σxcountfrom,x

estate i(symbol j)=countstate i(symbol j)/Σy(symbol y|statei)

• When the states are unknown

• Viterbi training



Parameter estimation when the  states are 
known - example

X 1 2 6 6 1 1 2

 F L F F L L L

aF,L=2/3

aF,F=1/3

aL,F=1/3

aL,L=2/3

eF(3)=0 ?

To avoid this, use pseudocounts

eF(1)=(1+1)/(3+6), 1 is a pseudocount, 6  

is the number of different symbols

eF(1)=2/9  

eF(2)=1/(3+6)=1/9  

eF(3)=1/(3+6)=1/9  

eF(4)=1/(3+6)=1/9  

eF(5)=1/(3+6)=1/9  

eF(6)=(2+1)/(3+6)=3/9

aF,L=(2+1)/(3+2)=3/5

aF,F=(1+1)/(3+2)=2/5

aL,F=(1+1)/(3+2)=2/5

aL,L=(2+1)/(3+2)=3/5

Or with pseudocounts



Viterbi training for parameter  estimation

• Pick a set of random parameters

• Repeat 

• Find the most probable path of states according to this 
set of parameters

• This path partitions the sequences into partitions 
according to the states

• Calculate new set of parameters, now from the  
known states

• Until the path does not change  anymore



Viterbi training

• The assignment of paths is a discrete process, thus the 
algorithm converges precisely

• When there is no path change, the parameters will not 
change either, because they are determined completely by 
the paths

• The algorithm maximizes the probability 

P(observed  data| Θ, π*)

and not P(observed data | Θ) which we ideally want



Parameter estimation –
illustration 1

0.19eF(1)=0.17

eF(2)=0.17 0.19

0.23eF(3)=0.17

eF(4)=0.17 0.08

0.23

0.08

eL(1)=0.10 0.07

eL(2)=0.10 0.10

eL(3)=0.10 0.10

eL(4)=0.10 0.17

eF(5)=0.17

eF(6)=0.17

FAIR

eL(5)=0.10 0.05

eL(6)=0.50 0.52

LOADED

aFF=0.95 0.73 aLL=0.9 0.71

aFL=0.05 0.27

LFa =0.1 0.29

The parameters estimated for 300 random rolls and an iterative  

process started from randomly selected parameters



Parameter estimation –
illustration 2

0.17eF(1)=0.17

eF(2)=0.17 0.19

0.17eF(3)=0.17

eF(4)=0.17 0.17

0.17

0.15

eL(1)=0.10 0.10

eL(2)=0.10 0.11

eL(3)=0.10 0.10

eL(4)=0.10 0.11

eF(5)=0.17

eF(6)=0.17

FAIR

eL(5)=0.10 0.10

eL(6)=0.50 0.48

LOADED

aFF=0.95 0.93 aLL=0.9 0.88

aFL=0.05 0.07

LFa =0.1 0.12

The parameters estimated for 30 000 random rolls and an  

iterative process started from randomly selected parameters
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