Hidden Markov Models

Lecture 7.3
by Marina Barsky

The honest and the dishonest casino

Choose L with $P(L)=0.01$

We assume that: $\quad P(F)=0.99$
Prior probabilities - before we see any evidence (sequence)

Recap: the odds given evidence (sequence)

- $P(W 1 \mid$ evidence $)=P($ evidence $\mid W 1) * P(W 1) / P($ evidence $)$
- $P(W 2 \mid$ evidence $)=P($ evidence $\mid W 2) * P(W 2) / P($ evidence $)$
- To compare P (W1|evidence) vs P (W2|evidence) :

P (W1|evidence) / P (W2|evidence)

- Or to avoid underflow:
$\log [\mathrm{P}$ (W1|evidence) / P (W2|evidence)]
- Log odds ratio $=\log [P($ evidence $\mid \mathrm{W} 1) * P(\mathrm{~W} 1) / \mathrm{P}($ evidence $\mid \mathrm{W} 2) * \mathrm{P}(\mathrm{W} 2)]$
- If >0 - first is more likely, if < 0-second is more likely

Bayes theorem for Markov sequences

- Pick a die at random - and roll
- We get 3 consecutive sixes: '666'
- Is the die loaded? What is the probability?
- We want to know $\mathrm{P}(\mathrm{L} \mid 3$ sixes)
- From Bayes theorem:
$P(L \mid 3$ sixes $)=P(3$ sixes $\mid L) * P(L) / P(3$ sixes $)$
$P(F \mid 3$ sixes $)=P(3$ sixes $\mid F) * P(F) / P(3$ sixes $)$
The sequence was generated either by fair or by loaded die $P(3$ sixes $)=P(3$ sixes $\mid F) * P(F)+P(3$ sixes $\mid \mathrm{L}) * P(L)=0.0058$
- $P(L \mid 3$ sixes $)=\left(0.5 * 0.5^{*} 0.5^{*} 0.01\right) / 0.0058=0.215$
- $P(F \mid 3$ sixes $)=(1 / 6)^{*}(1 / 6)^{*}(1 / 6)^{*} 0.99 / 0.0058=0.785$

Not enough evidence to conclude that the die was Loaded

If two models are equally likely, we can use the conditional probabilities for discrimination

We can just compare $P(M \mid L)$ and $P(M \mid F)$

We can use conditional probabilities for discrimination

$P(M \mid L)=0.5 * 0.5 * 0.5 * 0.1 * 0.5 * 0.1=0.000625=6.25 * 10^{-4}$
$P(M \mid F)=0.17 * 0.17 * 0.17 * 0.17 * 0.17 * 0.17=0.000024=2.4 * 10^{-5}$

How confident we are that this sequence was produced by a loaded die? $P(M$ and model L)/ P(M and model F)=25.89 Or $\log [P(M \mid$ model $L) / P(M \mid F)]=1.4$

The occasionally dishonest casino

Sequence generated by a model of an occasionally dishonest casino

Markov chains: recap

- The system can be in a finite number of states
- Transition from state to state is not predetermined, but rather is specified in terms of probabilities
- The transition probabilities depend only on the immediate history
- The process of transitions from state to state is called a Markov process or a Markov chain

States can also behave probabilistically

- While in a particular state, system emits a symbol m_{k} from a finite alphabet with the probability $e_{i}\left(m_{k}\right)$, called an emission probability of symbol m_{k} in state W_{i}
- If we construct the schedule of observation times, and at each point in time record the symbols emitted by a system along with the state, we obtain 2 sequences:
- the sequence of emitted symbols which is called an observed sequence M
- the sequence of states π which is called a path through system states

Terminology

Transition probabilities

Terminology

Emission probabilities

Transition and emission diagram

Tabular parameters

Emission probabilities

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50

Hidden Markov Model (HMM)

States are unknown (hidden)

3 types of questions to HMM

1. Given a sequence of N observations, what is the probability of obtaining this sequence given a particular state path (Sequence probability)
2. Given a sequence of N observations, what is the most probable sequence of the underlying states (Most probable path)
3. Given a sequence of N observations, what is the probability that the i-th observation was produced when the system was in state Wj

Question 1

Given a sequence and a path, what is the sequence probability?

- The probability $\mathrm{P}(\mathrm{M} \mid \pi)$ is the conditional probability that sequence M was generated while system was moving from state to state according to π

The probability that the sequence was generated following a path π

- Pick a path π
- Calculate a joint probability of π and M

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40

$P(M$ and $\pi)=0.17$ * 0.83 * 0.17 * 0.17 * 0.50 * 0.60 * $0.50=0.0006$

- Note that this is not $P(\pi \mid M)$

The probability that the sequence was generated following a path π when π is unknown (hidden)

- Pick a path π
- Calculate a joint probability of π and M

A suggested path
$P(M$ and $\pi)=0.17$ * $0.83 * 0.17 * 0.17 * 0.50 * 0.60$ * $0.50=0.0006$

	F	L
F	0.83	0.17
L	0.60	0.40

- Repeat for each possible path and choose a path which maximizes $P(\pi$ and $M)$.
- Total 2^{N} calculations (for 2 states and sequence of length N)

Question 2

Given only a sequence of observations, what is the most probable path of states?

Viterbi algorithm: dynamic programming

Dynamic programming. Initialization - the probability of choosing a die for the first time

- Add to the system a start state and parameters - the probabilities of choosing a fair or a loaded die in the beginning of a game

State F (fair die)
State L (loaded die)

Dynamic programming. Initialization

The graph of a process.

Dynamic programming. Recurrence relation

We are looking for a path which maximizes the probability of sequence M

$$
\bullet \bullet
$$

: :

Dynamic programming. Recurrence relation

If we know the best paths ending at states L and F in position 4 , we can choose max between them and terminate the program

Dynamic programming. Recurrence relation

This can be repeated for each combination of a position in a sequence of observations and one of 2 states

Note: the probabilities are multiplied, not added up

Viterbi algorithm. Demo 1

We have reached position $\mathrm{i}=1$ with the probability $0.9^{*} 0.17$ of

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

Viterbi algorithm. Demo 2

We can reach position $\mathrm{i}=2$ (F -state) with the probability $0.15^{*} 0.83^{*} 0.17$ or with probability $0.01^{*} 0.6^{*} 0.10$. We chose the max

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

The L-state in position $\mathrm{i}=2$ can be reached with probability $0.01^{*} 0.40^{*} 0.10$ or $0.15^{*} 0.17^{*} 0.10=0.0026$. The second is larger so we choose it.

Viterbi algorithm. Demo 3

We can reach position $\mathrm{i}=3$ (F -state) with the probability $0.02^{*} 0.83^{*} 0.17=0.0028$ or with probability $0.0026^{*} 0.4^{*} 0.17=0.00018$. We chose the max between these

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

The L-state in position $\mathrm{i}=3$ can be reached with probability $0.02^{*} 0.17^{*} 0.50=0.0017$ or $0.0026^{*} 0.4^{*} 0.5=0.0017$. We chose the second - arbitrarily

Viterbi algorithm. Demo 4

We can reach position $\mathrm{i}=4$ (F -state) with the probability $0.0028^{*} 0.83^{*} 0.17=0.0004$ or with probability $0.0017^{*} 0.6^{*} 0.17=0.00017$. We chose the max between these two:
 $0.0028^{*} 0.83^{*} 0.17=0.0004$

The L-state in position $\mathrm{i}=4$ can be reached with probability $0.0017^{*} 0.40^{*} 0.50=0.00034$ or $0.0028^{*} 0.17^{*} 0.5=0.00024$. We chose the max: $0.0017^{*} 0.40^{*} 0.50=0.00034$

Viterbi algorithm. Demo - end

Choose max: 0.0004 . So, the most probable sequence of states: FFFF

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

Evidently, it is not enough to have 2 sixes in a row in order to be able to spot the loaded die.

Viterbi algorithm. Log-values

$$
\begin{aligned}
& P\left(\pi_{F, 1}\right)=a_{0 F}{ }^{*} e_{F}(M[1]) \quad P\left(\pi_{L, 1}\right)=a_{0 L}{ }^{*} e_{L}(M[1]) \\
& P\left(\pi_{F, i+1}\right)=\max \left\{P\left(\pi_{F, i}\right)^{*} a_{F F}, P\left(\pi_{L, 1}\right)^{*} a_{L F}\right\}^{*} e_{F}(M[i+1]) \\
& P\left(\pi_{L, i+1}\right)=\max \left\{P\left(\pi_{L, i}\right)^{*} a_{L L}, P\left(\pi_{F, i}\right)^{*} a_{F L}\right\}^{*} e_{L}(M[i+1]) \\
& P\left(\pi^{*}\right)=\max \left\{P\left(\pi_{F, N}\right), P\left(\pi_{L, N}\right)\right\}
\end{aligned}
$$

In order to avoid the underflow errors, in practice log is used instead of the actual probabilities

$$
\begin{aligned}
& P\left(\pi_{F, 1}\right)=\log a_{0 F}+\log e_{F}(M[1]) \quad P\left(\pi_{L, 1}\right)=\log a_{0 L}+\log e_{L}(M[1]) \\
& P\left(\pi_{F, i+1}\right)=\max \left\{P\left(\pi_{F, i}\right)+\log a_{F F}, P\left(\pi_{L, 1}\right)+\log a_{L F}\right\}+\log e_{F}(M[i+1]) \\
& P\left(\pi_{L, i+1}\right)=\max \left\{P\left(\pi_{L, i}\right)+\log a_{L L}, P\left(\pi_{F, i}\right)+\log a_{F L}\right\}+\log e_{L}(M[i+1]) \\
& P\left(\pi^{*}\right)=\max \left\{P\left(\pi_{F, N}\right), P\left(\pi_{L, N}\right)\right\}
\end{aligned}
$$

How good is the prediction

Rolls	315116246446644245311321631164152133625144543631656626566666
Die	FFFPFFFFFFFFFFFFFEFFFFFFFEFFFFFFFEFFFFFFFERFFLLLLLLLLLLLLLLL
Viterbi	FFFFFFFFFFFFFFFFFFFPFFFFFFEFFFFFPFFFFFFFFEREFFFFL工 LLLLL
Rolls	$6511664531326512456366646316366531623264552362666666251510 \pm 1$
Die	LLLLLLFFFFFFFFFFFBLLLLLLLLLLLLLULLFFFLLLLLLLLLLLILLFFFFFFFFF
Viter	LLLLLLFFFPFFFFFFFPLLLLLLLLLLLLLULLLLLLLLLLLLLLLLLLLLFFFFFPFF
Rolls	22255544166656656356432464131513465146353411126414626253356
Die	FFFFFFEFLLLLLLILLLLLLFFWREFFFFFFFFFEGPFFFFFFFEFEFFFFPFF3FFLL
Viterbi	FFFFFFFPFPFFEFFFFFFFFFFHFFFFFFFPREREPFFPFFFFFF: Missing FL
Rolls	36516366646623253411366166116325256246225526525 short 36
Die	LLLLLLLLFFFERPFFFFFFFFFFFFZFRFFFFFEEFPFFFFFFFFF
Viterbi	
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFEFFFFFFFFFFFFFFEFELLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
V terbi	FFPFPFFFFFFPFFFFEFPFFFFFFFPFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFF

Overall, an underlying hidden pathway explains the given sequence well - the path explanation obtained with Viterbi is good

We can now answer these questions:

- What is the probability that a given sequence of observations came from a particular HMM
- Where in the sequence the model has probably changed

Activity. Discrimination by probability

- Markov models for the honest and for the dishonest casino are presented below:

$$
\begin{aligned}
& e(\text { Heads })=1 / 2 \\
& e(\text { Tails })=1 / 2
\end{aligned}
$$

Fair coin

$$
\begin{aligned}
& e(\text { Heads })=3 / 4 \\
& e(\text { Tails })=1 / 4
\end{aligned}
$$

Biased coin

Given that it is equally probable to choose F or L, find out which coin has most probably produced the following sequence of observations:

HHHTTHT

When the heads point to the biased coin?

- For sequence M of length N with k heads:
$P(M \mid$ fair coin $)=\Pi_{n}(1 / 2){ }^{*} P(F) / P(M) \sim 1 / 2^{N}$
$P(M \mid$ biased coin $)=\Pi_{k}(3 / 4) * \Pi_{N-k}(1 / 4)^{*} P(B) / P(M) \sim 3^{k} / 4^{*} 1 / 4 N-k$
- For this simple example, we can compute how many heads out of N are needed to conclude that the coin is biased:
- when $\mathrm{P}(\mathrm{M}$ and fair coin) < P (M and biased coin) ?

```
1/2}\mp@subsup{2}{}{\textrm{N}}<\mp@subsup{3}{}{\textrm{k}}/\mp@subsup{4}{}{\textrm{N}
1<3k/2N
2N}<\mp@subsup{3}{}{\textrm{k}
Nlog2<klog3
k> (log2/log3)*N
k>0.63 N
```


Activity

- Using the Viterbi algorithm, find the most probable path of states for the following sequence given the following HMM.

Observed sequence: HTTHHH

Building a Hidden Markov Model

- 2 parts:
- Model topology: what states there are and how are they connected
- The assignment of parameter values: the transition and emission probabilities

Parameter estimation

- We are given a set of training sequences
- 2 cases:
- When the states in the training sequences are known
$\mathrm{a}_{\text {from }, \mathrm{to}}=$ count $_{\text {from }, \mathrm{to}} / \Sigma_{\mathrm{x}}$ count $_{\text {from }, \mathrm{x}}$
$e_{\text {state } i}\left(\right.$ symbol $\left.^{j}\right)=$ count $_{\text {state } i}($ symbol $j) / \Sigma_{y}\left(\right.$ symbol $^{y} \mid$ state $\left._{i}\right)$
- When the states are unknown
- Viterbi training

Parameter estimation when the states are

 known - example| X | 1 | 2 | 6 | 6 | 1 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| π | F | L | F | F | L | L | L |

$$
\mathrm{e}_{\mathrm{F}}(3)=0 ?
$$

To avoid this, use pseudocounts
$e_{F}(1)=(1+1) /(3+6), 1$ is a pseudocount, 6 is the number of different symbols
$e F(1)=2 / 9$
$e_{F}(2)=1 /(3+6)=1 / 9$
$e_{F}(3)=1 /(3+6)=1 / 9$
$e_{F}(4)=1 /(3+6)=1 / 9$
$\mathrm{e}_{\mathrm{F}}(5)=1 /(3+6)=1 / 9$
$e_{F}(6)=(2+1) /(3+6)=3 / 9$

$$
\begin{aligned}
& a_{F, L}=2 / 3 \\
& a_{F, F}=1 / 3 \\
& a_{L, F}=1 / 3 \\
& a_{L, L}=2 / 3
\end{aligned}
$$

Or with pseudocounts

$$
\begin{aligned}
& a_{F, L}=(2+1) /(3+2)=3 / 5 \\
& a_{F, F}=(1+1) /(3+2)=2 / 5 \\
& a_{L, F}=(1+1) /(3+2)=2 / 5 \\
& a_{L, L}=(2+1) /(3+2)=3 / 5
\end{aligned}
$$

Viterbi training for parameter estimation

- Pick a set of random parameters
- Repeat
- Find the most probable path of states according to this set of parameters
- This path partitions the sequences into partitions according to the states
- Calculate new set of parameters, now from the known states
- Until the path does not change anymore

Viterbi training

- The assignment of paths is a discrete process, thus the algorithm converges precisely
- When there is no path change, the parameters will not change either, because they are determined completely by the paths
- The algorithm maximizes the probability

P(observed data| Θ, π^{*}) and not P (observed data | Θ) which we ideally want

Parameter estimation illustration 1

The parameters estimated for 300 random rolls and an iterative process started from randomly selected parameters

Parameter estimation illustration 2

The parameters estimated for 30000 random rolls and an iterative process started from randomly selected parameters

