Hidden Markov Models

Lecture 7.3

See sample code in casino.py


https://drive.google.com/file/d/1aTbb8kWnDOAcrrzzT_6KsLc_1hF9SMCJ/view?usp=sharing

The honest and the dishonest casino

Choose L with P(L) = 0.01
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We assume that: P(F)=0.99 P(L) =0.01

Prior probabilities — before we see any evidence (sequence)




Recap: the odds given evidence (sequence)

* P (W1]|evidence) = P(evidence | W1)*P(W1)/P(evidence)
* P (W2|evidence) = P(evidence | W2)*P(W?2)/P(evidence)

e To compare P (W1]|evidence) vs P (W2|evidence) :
P (W1]|evidence) / P (W2|evidence)

* Or to avoid underflow:

log [P (W1|evidence) /P (W2]|evidence)]

* Log odds ratio = log [P(evidence|W1)*P(W1)/ P(evidence|W2)*P(W?2)]
 If >0 —first is more likely, if < 0 —second is more likely



Bayes theorem for Markov sequences

* Pick a die at random - and roll
* We get 3 consecutive sixes: ‘666’
* s the die loaded? What is the probability?

* We want to know P(L| 3 sixes)

* From Bayes theorem:

P(L|3 sixes) = P(3 sixes|L)*P(L)/P(3 sixes)
P(F|3 sixes) = P(3 sixes|F)*P(F)/P(3 sixes)

The sequence was generated either by fair or by loaded die

P(3 sixes) = P(3 sixes|F)*P(F) + P(3 sixes|L) *P(L) = 0.0058

* P (L|3 sixes) = ( 0.5%0.5*%0.5 * 0.01) /0.0058 = 0.215
* P(F|3 sixes) = (1/6)*(1/6)*(1/6)*0.99 / 0.0058 = 0.785

Not enough evidence to conclude that the die was Loaded



If two models are equally likely, we can use the
conditional probabilities for discrimination

Sequence M .
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We can just compare P(M | L) and P(M | F)



We can use conditional probabilities for
discrimination
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P(M | L)=0.5*0.5*0.5*0.1*0.5*0.1=0.000625 = 6.25*10*
P(M | F)=0.17*0.17*0.17*0.17*0.17*0.17=0.000024 = 2.4 *10~

How confident we are that this sequence was produced by a loaded die? P(M and
model L)/ P(M and model F)=25.89
Or log [P(M | model L)/ P(M | F)]=1.4 Log-odds ratio



The occasionally dishonest casino
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Sequence generated by a model of an
occasionally dishonest casino
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Markov chains: recap

The system can be in a finite number of states

Transition from state to state is not predetermined, but
rather is specified in terms of probabilities

The transition probabilities depend only on the immediate
history

The process of transitions from state to state is called a
Markov process or a Markov chain



States can also behave probabilistically

While in a particular state, system emits a symbol m, from a
finite alphabet with the probability e(m,), called an
emission probability of symbol m,in state W,

If we construct the schedule of observation times, and at each
point in time record the symbols emitted by a system along
with the state, we obtain 2 sequences:

the sequence of emitted symbols which is called an
observed sequence M

the sequence of states t which is called a path through
system states



Terminology

Transition probabilities

P=1/2




Terminology

Emission probabilities

P=1/6




Transition and emission diagram

a--=0.83

er(1)=0.17
er(2)=0.17

er(3)=0.17
er(4)=0.17

er(5)=0.17

er(6)=0.17

a, ,=0.40

e (1)=0.10

State F (fair die)

a,,=0.17 e (2)=0.10

; e (3)=0.10

‘ a,-=0.60 e (4)=0.10
e (5)=0.10

e (6)=0.50

State L (loaded die)



Tabular parameters

Emission probabilities

The state transition = L
matrix
1 0.17]0.10
i - 2 0.17]0.10
0.83|0.17 : :
3 0.17]0.10
L 0.60 | 0.40
4 0.17]0.10
5 0.170.10
6 0.17| 0.50




Hidden Markov Model (HMM)

States are unknown (hidden)




3 types of questions to HMM

1. Given a sequence of N observations, what is the
probability of obtaining this sequence given a particular
state path (Sequence probability)

2. Given a sequence of N observations, what is the most
probable sequence of the underlying states (Most
probable path)

3. Given a sequence of N observations, what is the probability
that the i-th observation was produced when the system
was in state Wj



Question 1

Given a sequence and a path, what is the
sequence probability?

The probability P(M| n) is the conditional probability that
sequence M was generated while system was moving from
state to state according to



L X X
o000
The probability that the sequence was oo
generated following a path it
Pick a path 1 F L
Calculate a joint probability of Tr and M ! 017 10.10
2 0.17 | 0.10
3 0.17 | 0.10
° e o (0o o 4 0.17 | 0.10
[ ] ® e o o o
Py e o0 o 5 0.17 | 0.10
6 0.17 | 0.50
A suggested path
F L
F 0.83 | 0.17
0.60 | 0.40

P(Mand 1m)=0.17*0.83*0.17 *0.17 * 0.50 * 0.60 * 0.50=0.0006

Note that this is not P(11 | M)



The probability that the sequence was generated
following a path m when mt is unknown (hidden)

Pick a path 1 F L
Calculate a joint probability of r and M 1 0.17 10.10
2 0.17 | 0.10
3 0.17 | 0.10
.. ° ° 4 0.17 | 0.10
. ® . o
) ) 5 0.17 | 0.10
6 0.17 | 0.50
A suggested path
F L
= 0.83 | 0.17
0.60 | 0.40

P(Mand m)=0.17*0.83*0.17 *0.17 * 0.50 * 0.60 * 0.50=0.0006

Repeat for each possible path and choose a path which maximizes
P(mr and M).
Total 2N calculations (for 2 states and sequence of length N)



Question 2

Given only a sequence of observations, what is
the most probable path of states?

Viterbi algorithm: dynamic programming



Dynamic programming. Initialization — the
probability of choosing a die for the first time

Add to the system a start state and parameters — the probabilities
of choosing a fair or a loaded die in the beginning of a game

a--=0.83

a,,=0.40

er(1)=0.17 e (1)=0.10
e(2)=0.17 ar, =0.17 e (2)=0.10

v

er(3)=0.17 e, (3)=0.10

A

er(4)=0.17 a, -=0.60 e, (4)=0.10

e.(5)=0.17 e (5)=0.10

ex(6)=0.17 e (6)=0.50
a=01

State F (fair die) State L (loaded die)

ay==0.9




Dynamic programming.
Initialization

The graph of a process.

P (1T 1)=ap*ex(M[1])
P(1T_1)=ao e (M[1])



Dynamic programming.
Recurrence relation




Dynamic programming.
Recurrence relation

If we know the best paths ending at states L and F in position 4, we can
choose max between them and terminate the program

Choose max
(cost (Ng),
cost (N,))




Dynamic programming. Recurrence relation

This can be repeated for each combination of a position in a sequence of
observations and one of 2 states

P(TTe i) =max {P(Te)*are, P(m )*ar} * ex(M[i+1])

P(11is1)=max {P(_j)*a, ., P(Tg)*ag } * e (M[i+1])

P(m*)=max {P(TTen), P(TLn)}

Note: the probabilities are multiplied, not added up



Viterbi algorithm. Demo 1

0.17| 0.10
0.17| 0.10
0.17| 0.10
0.17| 0.10
0.17| 0.10
0.17| 0.50

OO~ W[IN]|PE

F | 0.83| 0.17
0.60| 0.40

We have reached position i=1 with the probability 0.9%0.17 of [0 | 0.90] 0.10
going to the F state and emitting 3, and with probability

0.1*0.10 of going to the L-state and emitting 3. There are no

other possibilities
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Viterbi algorithm. Demo 2 -
0.15 0.02
F L
11]0.17|0.10
2 10.17]0.10
31017 0.10
4 10.17|0.10
510.17]0.10
® e o o o
® ® o o o o 6 [ 0.17| 0.50
F L
F { 0.83| 0.17
We can reach position i=2 (F-state) with the probability L | 0.60| 0.40
0.15*0.83*0.17 or with probability 0.01*0.6*0.10. We chose the max |0 | 0.90| 0.10

between these two: 0.15*0.83*0.17=0.002

The L-state in position i=2 can be reached with probability
0.01*0.40*0.10 or 0.15*0.17*0.10=0.0026. The second is larger so
we choose it.



Viterbi algorithm. Demo 3

0.17| 0.10
0.17| 0.10
0.17| 0.10
0.17| 0.10
0.17| 0.10
0.17| 0.50

OO~ W[IN]|PE

T

0.83| 0.17

We can reach position i=3 (F-state) with the probability L | 0.60| 0.40
0.02*0.83*0.17=0.0028 or with probability 0l 090| 010
0.0026*0.4*0.17=0.00018. We chose the max between these
two: 0.02*0.83*0.17=0.0028

The L-state in position i=3 can be reached with probability
0.02*0.17*0.50=0.0017 or 0. 0026*0.4*0.5=0.0017. We chose the
second - arbitrarily



Viterbi algorithm. Demo 4

0.15 0.02 0.0028 0.0004

We can reach position i=4 (F-state) with the probability
0.0028*0.83*0.17=0.0004 or with probability
0.0017*0.6*0.17=0.00017. We chose the max between these two:
0.0028*0.83*0.17=0.0004

The L-state in position i=4 can be reached with probability
0.0017*0.40*0.50=0.00034 or 0.0028*0.17*0.5 =0.00024. We
chose the max: 0.0017*0.40*0.50=0.00034
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Viterbi algorithm. Demo - end

Choose max: 0.0004. So, the most probable sequence of states:
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Evidently, it is not enough to have 2 sixes in a row in order to be able to spot the

loaded die.



Viterbi algorithm. Log-values

P (1T 1)=ae*er(M[1]) P(_1)= ag *e (M[1])

P(Teir)=max { P(Tg)*agr, P(mm ) *ar F* er(M[i+1])

P(11_isq)=max {P(_j)*a, ., P(Tg)*ag } *e (M[i+1])

P(1r*)=max {P(TTg ), P N)}

In order to avoid the underflow errors, in practice
log is used instead of the actual probabilities

P(11e1)=log ape+ log ex(M[1]) P(1r_41)=log ag + log e (M[1])
P(1Tg i1 )=max {P(Tr)+ log agr, P(Tr )+ log a ¢ }+ log er(M[i+1])
P(1ix1)=max {P(mr )+ log a,, P(1g;)+ log ag } + log e (M[i+1])

P(1r*)=max {P(1Ten), P )}




How good is the prediction

Rolls
Pie
Vviterbi

Rolls
Die
Viterbi

Rells
Die
Viterb:

Rolls
Die
Viterbdi
»

Rolls
Die
Viterdi

626566666

315116246446644245311321631164152133625144

4363165
FFFFPFFFFFFFFFFFFFFFFFFFFFFFPFFFFFFFFFFFFFHFFLLLLL
FFFFFFFFFFFFFFFFFTFFFFFFFFFFPFFFFPFFFFFFFFHFFFFFLL "

elay

6511664531326512456366646316366531623264552362666666251510
LLLLLLFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLL LI LLLLLLLLLLLLLFFFFFFFF

FFFFFFEFLLLLLLLLLLLLLFF FFFFPFFFFPFFFFFFFFFPFFFFFPFFPFLL
PPFFZFFFPFFFFFFPYFFFFFE FZFFPFPFPFFFFE

22255232166556656356432 364131513465146353411126414626253356

FFFFFF

Missing

J661€366646623253441366166116325256246225526529 short 36
LLLLLLLLFFFFPPFPFFFFFPFFFFFFPFFFFFFFFPFFFFFFFF stretches ¥
LLLLLLLLLLLLPPFFFFFFFFPFFFFsFPFFFFFFFFFFFFFFFFF z FF

2331216253644814432335163243633665562466662632666612355245242
FFFFFFFFFFFFFFFFFFFFFFFFFF FLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
FFFFPFFFFFFFFFFFFFPFFFFFFFFFFFLLLLLLLLLLLULLLLLLLLFFFFFFFFFFF

Overall, an underlying hidden pathway explains the given sequence well
— the path explanation obtained with Viterbi is good



We can now answer these questions:

What is the probability that a given sequence of observations came
from a particular HMM

Where in the sequence the model has probably changed



Activity. Discrimination by probability

Markov models for the honest and for the dishonest casino are

presented below:

e(Heads)=1/2
e(Tails)=1/2

Fair coin

Given that it is equally probable to choose F or L, find out which coin
has most probably produced the following sequence of observations:

HHHTTHT

e(Heads)=3/4
e(Tails)=1/4

Biased coin




When the heads point to the biased coin?

For sequence M of length N with k heads:

P(M | fair coin)=I1.(1/2) * P(F)/P(M)~1/2N

P (M | biased coin)=I1,(3/4) *T_.(1/4)*P(B)/P(M)~3k/4k*1/4N-k
For this simple example, we can compute how many

heads out of N are needed to conclude that the coin is
biased:

when P(M and fair coin) < P (M and biased coin) ?

1/2N<3k/4N
1<3k/2N
2N <3k

Nlog2<klog3
k > (log2/log3)*N
k>0.63N



Activity

Using the Viterbi algorithm, find the most probable path of states

for the following sequence given the following HMM.

4/5

1/4 1/5
@s):uz 34,
e(Tails)=1/2  |* 15

Fair coin

1/2
e(Head@

e(Tails)=1/4

Biased coin

Observed sequence: HTTHHH



Building a Hidden Markov Model

2 parts:

Model topology: what states there are and how are they
connected

The assignment of parameter values: the transition
and emission probabilities



Parameter estimation

We are given a set of training sequences
2 cases:

When the states in the training sequences are known
afrom,to=COu r]tfrom,to/zxco u ntfrom,x
€tate i(SYMbol j)=count. ;(symbol j)/Z,(symbol y|state)

When the states are unknown
Viterbi training



Parameter estimation when the states are

known - example

eF(1)=2/9
er(2)=1/(3+6)=1/9
er(3)=1/(3+6)=1/9
er(4)=1/(3+6)=1/9
er(5)=1/(3+6)=1/9
er(6)=(2+1)/(3+6)=3/9

X 1 2 6 6 1 1 2
n F L F F L L L
er(3)=0"? ar =2/3
To avoid this, use pseudocounts ape=1/3
e-(1)=(1+1)/(3+6), 1 is a pseudocount, 6 a_ =1/3
is the number of different symbols a, ,=2/3

Or with pseudocounts

ar, =(2+1)/(3+2)=3/5
ac r=(1+1)/(3+2)=2/5
a,_r=(1+1)/(3+2)=2/5
a,  =(2+1)/(3+2)=3/5




Viterbi training for parameter estimation

Pick a set of random parameters

Repeat

Find the most probable path of states according to this
set of parameters

This path partitions the sequences into partitions
according to the states

Calculate new set of parameters, now from the
known states

Until the path does not change anymore



Viterbi training

The assignment of paths is a discrete process, thus the
algorithm converges precisely

When there is no path change, the parameters will not

change either, because they are determined completely by
the paths

The algorithm maximizes the probability
P(observed data| ©, *)

and not P(observed data | ©) which we ideally want



Parameter estimation —

illustration 1
aFF:O-95 O—-—73 aLL:0.9 071
er(1)=0.17 0.19 e (1)=0.10 0.07
e|:(2):017 0.19 ar =0.05 0.27 e|_(2):010 0.10
\ ex(3)=0.17 0.23 ” e (3)=0.10 0.10
=0. 0.08 ) e (4)=0.10 0.17
er(4)=0.17 a,=0.1 0.29 L4)
e-(5)=0.17 0.23 e (5)=0.10 0.05
e-(6)=0.17 0.08 e (6)=0.50 0.52
FAIR LOADED

The parameters estimated for 300 random rolls and an iterative

process started from randomly selected parameters




Parameter estimation —

illustration 2
arr=0.95 0.93 a,=0.90.88
er(1)=0.17 0.17 e (1)=0.10 0.10
e|:(2):017 0.19 ar =0.05 0.07 e (2)=0.10 0.11
\ ex(3)=0.17 0.17 ” e (3)=0.10 0.10
=0. 0.17 ) e (4)=0.10 0.11
er(4)=0.17 a,r=0.1 0.12 L4)
e-(5)=0.17 0.17 e (5)=0.10 0.10
e-(6)=0.17 0.15 e (6)=0.50 0.48
FAIR LOADED

The parameters estimated for 30 000 random rolls and an
iterative process started from randomly selected parameters
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