Hidden Markov Models

Lecture 7.3

by Marina Barsky

See sample code in *casino.py*

The honest and the dishonest casino

Choose L with P(L) = 0.01

Recap: the odds given evidence (sequence)

- P (W1|evidence) = P(evidence|W1)*P(W1)/P(evidence)
- P (W2|evidence) = P(evidence|W2)*P(W2)/P(evidence)
- To compare P (W1|evidence) vs P (W2|evidence) :
- P (W1|evidence) / P (W2|evidence)
- Or to avoid underflow:

log [P (W1|evidence) / P (W2|evidence)]

- Log odds ratio = log [P(evidence|W1)*P(W1)/ P(evidence|W2)*P(W2)]
- If > 0 first is more likely, if < 0 second is more likely

Bayes theorem for Markov sequences

- Pick a die at random and roll
- We get 3 consecutive sixes: '666'
- Is the die loaded? What is the probability?
- We want to know P(L|3 sixes)
- From Bayes theorem:

```
P(L|3 \text{ sixes}) = P(3 \text{ sixes}|L)*P(L)/P(3 \text{ sixes})
```

P(F|3 sixes) = P(3 sixes|F)*P(F)/P(3 sixes)

The sequence was generated either by fair or by loaded die P(3 sixes) = P(3 sixes|F)*P(F) + P(3 sixes|L)*P(L) = 0.0058

- P (L|3 sixes) = (0.5*0.5*0.5 * 0.01) /0.0058 = 0.215
- P(F|3 sixes) = (1/6)*(1/6)*(1/6)*0.99 / 0.0058 = 0.785

Not enough evidence to conclude that the die was Loaded

If two models **are** <u>equally likely</u>, we can use the conditional probabilities for discrimination

We can just compare P(M | L) and P(M | F)

We can use conditional probabilities for discrimination

P(M | L)=0.5*0.5*0.5*0.1*0.5*0.1=0.000625 = 6.25*10⁻⁴

P(M | F)=0.17*0.17*0.17*0.17*0.17*0.17=0.000024 = 2.4 *10⁻⁵

How confident we are that this sequence was produced by a loaded die? P(M and model L)/ P(M and model F)=25.89 Or log [P(M I model L)/ P(M | F)]=1.4 Log-odds ratio

The occasionally dishonest casino

Sequence generated by a model of an occasionally dishonest casino

Markov chains: recap

- The system can be in a finite number of states
- Transition from state to state is not predetermined, but rather is specified in terms of *probabilities*
- The transition probabilities depend only on the immediate history
- The process of transitions from state to state is called a Markov process or a Markov chain

States can also behave probabilistically

- While in a particular state, system emits a symbol m_k from a finite alphabet with the probability e_i(m_k), called an emission probability of symbol m_k in state W_i
- If we construct the schedule of observation times, and at each point in time record the symbols emitted by a system along with the state, we obtain 2 sequences:
 - the sequence of emitted symbols which is called an observed sequence M
 - the sequence of states π which is called a *path* through system states

Terminology

Transition probabilities

Terminology

Emission probabilities

Transition and emission diagram

State F (fair die)

State L (loaded die)

Tabular parameters

The state transition matrix

	F	L
F	0.83	0.17
L	0.60	0.40

Emission probabilities

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50

Hidden Markov Model (HMM)

States are unknown (hidden)

3 types of questions to HMM

- Given a sequence of N observations, what is the probability of obtaining this sequence given a particular state path (Sequence probability)
- Given a sequence of N observations, what is the most probable sequence of the underlying states (Most probable path)
- Given a sequence of N observations, what is the probability that the i-th observation was produced when the system was in state Wj

Question 1

Given a sequence and a path, what is the sequence probability?

 The probability P(M | π) is the *conditional probability* that sequence M was generated while system was moving from state to state according to π

The probability that the sequence was generated following a path $\boldsymbol{\pi}$

- Pick a path π
- Calculate a joint probability of π and M

A suggested path

P(M and π)=0.17 * 0.83 * 0.17 * 0.17 * 0.50 * 0.60 * 0.50=0.0006

• Note that this is not $P(\pi \mid M)$

	F	L
F	0.83	0.17
L	0.60	0.40

- The probability that the sequence was generated following a path π when π is unknown (hidden)
- Pick a path π
- Calculate a joint probability of π and M

P(M and π)=0.17 * 0.83 * 0.17 * 0.17 * 0.50 * 0.60 * 0.50=0.0006

- Repeat for each possible path and choose a path which maximizes $P(\pi \text{ and } M)$.
- Total 2^N calculations (for 2 states and sequence of length N)

Question 2

Given only a sequence of observations, what is the most probable path of states?

Viterbi algorithm: dynamic programming

Dynamic programming. Initialization – the probability of choosing a die for the first time

 Add to the system a start state and parameters – the probabilities of choosing a fair or a loaded die in the beginning of a game

State F (fair die)

State L (loaded die)

Dynamic programming. Initialization

 $\begin{array}{l} \mathsf{P}(\pi_{\text{F},1}) = a_{0\text{F}}^{*} e_{\text{F}}(\text{M}[1]) \\ \mathsf{P}(\pi_{\text{L},1}) = a_{0\text{L}}^{*} e_{\text{L}}(\text{M}[1]) \end{array}$

Dynamic programming. Recurrence relation

We are looking for a path which maximizes the probability of sequence M

Dynamic programming. Recurrence relation

If we know the best paths ending at states L and F in position 4, we can choose max between them and terminate the program

Dynamic programming. Recurrence relation

This can be repeated for each combination of a position in a sequence of observations and one of 2 states


```
\begin{split} \mathsf{P}(\pi_{\mathsf{F},\mathsf{i}+1}) = \max \left\{ \mathsf{P}(\pi_{\mathsf{F},\mathsf{i}})^* a_{\mathsf{F}\mathsf{F}}, \, \mathsf{P}(\pi_{\mathsf{L},\mathsf{i}})^* a_{\mathsf{L}\mathsf{F}} \right\} & * \ \mathsf{e}_\mathsf{F}(\mathsf{M}[\mathsf{i}+1]) \\ \mathsf{P}(\pi_{\mathsf{L},\mathsf{i}+1}) = \max \left\{ \mathsf{P}(\pi_{\mathsf{L},\mathsf{i}})^* a_{\mathsf{L}\mathsf{L}}, \, \mathsf{P}(\pi_{\mathsf{F},\mathsf{i}})^* a_{\mathsf{F}\mathsf{L}} \right\} & * \ \mathsf{e}_\mathsf{L}\left(\mathsf{M}[\mathsf{i}+1]\right) \\ \mathsf{P}(\pi^*) = \max \left\{ \mathsf{P}(\pi_{\mathsf{F},\mathsf{N}}), \, \mathsf{P}(\pi_{\mathsf{L},\mathsf{N}}) \right\} \end{split}
```

Note: the probabilities are *multiplied*, not added up

We have reached position i=1 with the probability 0.9*0.17 of going to the F state and emitting 3, and with probability 0.1*0.10 of going to the L-state and emitting 3. There are no other possibilities

0.10

0.90

0

We can reach position i=2 (F-state) with the probability 0.15*0.83*0.17 or with probability 0.01*0.6*0.10. We chose the max between these two: 0.15*0.83*0.17=0.002

The L-state in position i=2 can be reached with probability 0.01*0.40*0.10 or 0.15*0.17*0.10=0.0026. The second is larger so we choose it.

0.0026*0.4*0.17=0.00018. We chose the max between these two: 0.02*0.83*0.17=0.0028

The L-state in position i=3 can be reached with probability 0.02*0.17*0.50=0.0017 or 0. 0026*0.4*0.5=0.0017. We chose the second - arbitrarily

Viterbi algorithm. Demo 4

0

0.90

0.10

0.0028*0.83*0.17=0.0004 or with probability

0.0017*0.6*0.17=0.00017. We chose the max between these two: 0.0028*0.83*0.17=0.0004

The L-state in position i=4 can be reached with probability 0.0017*0.40*0.50=0.00034 or 0.0028*0.17*0.5 =0.00024. We chose the max: 0.0017*0.40*0.50=0.00034

Evidently, it is not enough to have 2 sixes in a row in order to be able to spot the loaded die.

Viterbi algorithm. Log-values

```
P(\pi_{F,1}) = a_{0F}^* e_F(M[1]) \qquad P(\pi_{L,1}) = a_{0L}^* e_L(M[1])
```

```
P(\pi_{F,i+1})=max \{ P(\pi_{F,i})^*a_{FF}, P(\pi_{L,i})^*a_{LF} \}^* e_F(M[i+1])
```

```
P(\pi_{L,i+1})=max \{P(\pi_{L,i})^*a_{LL}, P(\pi_{F,i})^*a_{FL}\} *e_L(M[i+1])
```

```
P(\pi^*)=\max \{P(\pi_{F,N}), P(\pi_{L,N})\}
```

In order to avoid the underflow errors, in practice *log* is used instead of the actual probabilities

```
\begin{split} \mathsf{P}(\pi_{\mathsf{F},1}) = \log a_{0\mathsf{F}} + \log e_{\mathsf{F}}(\mathsf{M}[1]) & \mathsf{P}(\pi_{\mathsf{L},1}) = \log a_{0\mathsf{L}} + \log e_{\mathsf{L}}(\mathsf{M}[1]) \\ \mathsf{P}(\pi_{\mathsf{F},i+1}) = \max \{\mathsf{P}(\pi_{\mathsf{F},i}) + \log a_{\mathsf{FF}}, \ \mathsf{P}(\pi_{\mathsf{L},i}) + \log a_{\mathsf{LF}}\} + \log e_{\mathsf{F}}(\mathsf{M}[i+1]) \\ \mathsf{P}(\pi_{\mathsf{L},i+1}) = \max \{\mathsf{P}(\pi_{\mathsf{L},i}) + \log a_{\mathsf{LL}}, \ \mathsf{P}(\pi_{\mathsf{F},i}) + \log a_{\mathsf{FL}}\} + \log e_{\mathsf{L}}(\mathsf{M}[i+1]) \\ \mathsf{P}(\pi^*) = \max \{\mathsf{P}(\pi_{\mathsf{F},\mathsf{N}}), \ \mathsf{P}(\pi_{\mathsf{L},\mathsf{N}})\} \end{split}
```

How good is the prediction

Overall, an underlying hidden pathway explains the given sequence well – the path explanation obtained with Viterbi is good

We can now answer these questions:

- What is the probability that a given sequence of observations came from a particular HMM
- Where in the sequence the model has probably changed

Activity. Discrimination by probability

 Markov models for the honest and for the dishonest casino are presented below:

Fair coin

e(Heads)=3/4 e(Tails)=1/4

Biased coin

Given that it is equally probable to choose F or L, find out which coin has most probably produced the following sequence of observations:

НННТТНТ

When the heads point to the biased coin?

• For sequence M of length N with *k* heads:

 $P(M | fair coin) = \Pi_n(1/2) * P(F)/P(M) \sim 1/2^N$

P (M | biased coin)= $\Pi_{k}(3/4) *\Pi_{N-k}(1/4)*P(B)/P(M) \sim 3^{k}/4^{k*1}/4^{N-k}$

- For this simple example, we can compute how many heads out of N are needed to conclude that the coin is biased:
- when P(M and fair coin) < P (M and biased coin) ?

1/2^N<3^k/4^N 1<3^k/2^N 2^N<3^k Nlog2<klog3 k > (log2/log3)*N k > 0.63 N

Activity

• Using the Viterbi algorithm, find the most probable path of states for the following sequence given the following HMM.

Observed sequence: HTTHHH

Building a Hidden Markov Model

- 2 parts:
 - Model topology: what states there are and how are they connected
 - The assignment of parameter values: the transition and emission probabilities

Parameter estimation

- We are given a set of training sequences
- 2 cases:
 - When the states in the training sequences are known

 $a_{from,to} = count_{from,to} / \Sigma_x count_{from,x}$

 $e_{\text{state i}}(\text{symbol j})=\text{count}_{\text{state i}}(\text{symbol j})/\Sigma_{y}(\text{symbol y}|\text{state}_{i})$

- When the states are unknown
 - Viterbi training

Parameter estimation when the states are known - example

Х	1	2	6	6	1	1	2
π	F	L	F	F	L	L	L

e_F(3)=0 ?

```
To avoid this, use pseudocounts
```

 $e_F(1)=(1+1)/(3+6)$, 1 is a pseudocount, 6 is the number of different symbols

eF(1)=2/9

 $e_F(2)=1/(3+6)=1/9$

```
e_F(3)=1/(3+6)=1/9
```

 $e_F(4)=1/(3+6)=1/9$

e_F(5)=1/(3+6)=1/9

 $e_F(6)=(2+1)/(3+6)=3/9$

 $a_{F,L}=2/3$ $a_{F,F}=1/3$ $a_{L,F}=1/3$ $a_{L,L}=2/3$

Or with pseudocounts

 $a_{F,L}=(2+1)/(3+2)=3/5$ $a_{F,F}=(1+1)/(3+2)=2/5$ $a_{L,F}=(1+1)/(3+2)=2/5$ $a_{L,L}=(2+1)/(3+2)=3/5$

Viterbi training for parameter estimation

- Pick a set of random parameters
- Repeat
 - Find the most probable path of states according to this set of parameters
 - This path partitions the sequences into partitions according to the states
 - Calculate new set of parameters, now from the known states
- Until the path does not change anymore

Viterbi training

- The assignment of paths is a discrete process, thus the algorithm converges precisely
- When there is no path change, the parameters will not change either, because they are determined completely by the paths
- The algorithm maximizes the probability
 P(observed data | Θ, π*)
 and not P(observed data | Θ) which we ideally want

Parameter estimation – illustration 1

The parameters estimated for 300 random rolls and an iterative process started from randomly selected parameters

Parameter estimation – illustration 2

The parameters estimated for 30 000 random rolls and an iterative process started from randomly selected parameters