Applications of Hidden Markov Models

Lecture 7.4

by Marina Barsky

HMM applications

- Robot planning + sensing when there's uncertainty
- Speech Recognition/Understanding
- Consumer decision modeling
- Economics & Finance
- Human Genome Project
- ...

Classic example: Speech recognition

- Signal \rightarrow words
 - Observable is signal
 - Hidden state is part of word
- Formulation:
 - What is the most probable word given this signal?

UTTERLY GROSS SIMPLIFICATION

In practice: many levels of inference – not only HMM

Example: Human daily activities recognition from wearable sensor signals

Bio-sequence application: Gene finding

CpG islands

- C nucleotide followed by G is easily methylated
- Methylated C easily becomes T
- The methylation is suppressed in important regulatory regions – around promoters (starting sites of transcription)
- Thus, an overall low frequency of C->G di-nucleotide is significantly increased in the gene promoter regions

Biological questions

- Given a short stretch of DNA sequence, determine whether it came from a CpG island or not
- Given a long un-annotated DNA sequence, find CpG islands in it

Transition probability estimation: from real DNA sequences

From 48 **known** CpG islands of a total length 60,000 nucleotides, and from regular DNA stretches:

the transition probabilities for each pair of nucleotides were estimated (expected 0.25 if at random)

+	A	С	G	Т
А	0.18	0.27	0.43	0.12
С	0.17	0.37	0.27	0.19
G	0.16	0.34	0.38	0.12
Т	0.08	0.36	0.38	0.18

-	А	С	G	Т
А	0.30	0.20	0.29	0.21
С	0.32	0.30	0.08	0.30
G	0.25	0.25	0.30	0.20
Т	0.18	0.24	0.29	0.29

 $a_{from,to} = count_{from,to} / \Sigma_x count_{from,x}$

Markov model for DNA sequence

Am I inside a CpG island?

To use these (+) and (-) models for discrimination for a given sequence we calculate the log-odds ratio:

- Score(M)=log [P(M|given model +)/P(M|given model -)]
- If this value is positive, we are in the CpG island, if not, we are not

Model efficiency: results of tests on another set of labeled DNA sequences

Finding CpG islands - HMM

- HMM: essential difference from a simple Markov chain is that there is no one-to-one correspondence between the states and the symbols
- By looking at a *single symbol*, there is no way to tell whether it came from state C+ or C-

Computing Log-odds Ratios in a sliding window

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \dots x_n$

- Consider a *sliding window* of the outcome sequence
- Find the log-odds for this short window

Disadvantages:

- the length of CpG-island is not known in advance
- different windows may classify the same position differently

The most probable path through the sequence of states

The most probable path for sequence CGCG

G	0	С	G	С	(state)	v
0		0	0	0	1	В
0	(0	0	0	0	A_+
0	(0.012	0	0.13	0	C+
2	0.0032	0	0.034	0	0	G ₊
0	(0	0	0	0	T ₊
0	(0	0	0	0	A_
0	(0.0026	0	0.13	0	C_
1	0.00021	0	0.010	0	0	G_
0	(0	0	0	0	T_

When we apply the Viterbi algorithm to a long un-annotated DNA sequence, the states will switch between + and -, giving suggested boundaries for CpG islands

Bio-sequence application: Aligning a given sequence to a family of sequences

Profile HMM

Multiple Alignments and Protein family classification

- Multiple alignment of a protein family shows variations in conservation along the length of a protein
- Example: after aligning many globin proteins, the biologists recognized that the helices region in globins are more conserved than others.

Finding distant members of a Protein family

- A distant cousin of functionally related sequences in a protein family may have weak pairwise similarities with each member of the family and thus fail significance test
- However, they may have weak similarities with many members of the family

- The goal is to align a sequence to all members of the family at once.
- Family of related proteins can be represented by their multiple alignment and the corresponding profile.

Profile representation of Protein families

For example, aligned **DNA sequences** can be represented by a 4 ·n profile matrix reflecting the frequencies of nucleotides in every aligned position.

\mathbf{A}	.72	.14	0	0	.72	.72	0	0
\mathbf{T}	.14	.72	0	0	0	.14	.14	.86
G	.14	.14	.86	.44	0	.14	0	0
С	0	0	.14	.56	.28	0	.86	.14

Protein family can be represented by a $20 \cdot n$ profile representing frequencies of amino acids.

Multiple alignment and symbol probabilities

Helix	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
HBA_HUMAN	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTORFFESF
MYG_PHYCA	VLSEGEWQLVLHVWAKVEADVAGHGODILIRLFKSHPETLEKFDRF
GLB3_CHITP	DPVGILYAVFKADPSIMAKPTQF
GLB5_PETMA	PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAOEFFPKF
LGB2_LUPLU	GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI	GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPOMAAVFG-F
Consensus	LS vaWkv g.L.f.P. F.F
Helix	DDDDDDDEEEBEEEEEEEEEEEEEEEEEEEEEEEEEEE
HBA_HUMAN	-DLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL-
HBB_HUMAN	GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL-
MYG_PHYCA	KHLKTEAEMKASEDLKKHGVTVLTALGAILKKK-GHHEAELKPLAOSHATKH-
GLB3_CHITP	AG-KDLESIKGTAPFETHANRIVGFFSKIIGELPNIEADVNTFVASHKPRG-
GLB5_PETMA	KGLTTADOLKKSADVRWHAERI INAVNDAVASM DDTEKMSMKLRDLSGKHAKSF-
LGB2_LUPLU	LK-GTSEVFONNPELOAHAGKVFKLVYEAAIOLOVTGVVVTDATLKNLGSVHVSKG-
GLB1_GLYDI	SGASDPGVAALGAKVLAQIGVAVSHLGDEGKMVAOMKAVGVRHKGYGN
Consensus	, t v Hg kv. a a 1 d . al. 1 H .
Helix	FFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
HBA_HUMAN	-RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
HBB_HUMAN	-HVDPENFRLLGNVLVCVLAHHFGKEFTPPVOAAYOKVVAGVANALAHKYH
MYG_PHYCA	-KIPIKYLEFISEAIIHVLHSRHPGDFGADAOGAMNKALELFRKDIAAKYKELGYCG
GLB3_CHITP	VTHDQLNNFRAGFVSYMKAHTDFA-GAEAAWGATLDTFFGMIFSKM
GLB5_PETMA	-QVDPQYFKVLAAVIADTVAAGDAGFEKLMSMICILLRSAY
LGB2_LUPLU	VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA
GLB1_GLYDI	KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLOS
Consensus	v. f 1 f . aa. k 1 sky

What are Profile HMMs?

- A Profile HMM is a probabilistic representation of a multiple alignment
- A given multiple alignment (of a protein family) is used to build a profile HMM
- This model then may be used to find and score less obvious potential matches of new protein sequences

Building a profile HMM

- Assign each column (sequence position) to a *Match* state in HMM. Add Insertion and *Deletion* state.
- Estimate the emission probabilities according to amino acid counts in column from the multiple alignment. Different positions in the protein will have different emission probabilities.
- Estimate the transition probabilities between *Match, Deletion* and *Insertion* states
- The HMM model gets **trained** to derive the optimal parameters

States of Profile HMM

- Match states $M_1...M_n$ (plus *begin/end* states)
- Insertion states $I_0 I_1 \dots I_n$
- Deletion states $D_1...D_n$

Aligning new sequence to a profile

- HMMs can be used for aligning a sequence against a profile representing protein family
- A 20·n profile P corresponds to n sequentially linked match states $M_1, ..., M_n$ in the profile HMM of P

Emission Probabilities in Profile HMM

• Probability of emitting a symbol *a* at an insertion state *I_i*:

$$e_{ij}(a) = p(a)$$

where p(a) is the frequency of the occurrence of the symbol a in all the sequences.

			10	20	30	40
ARSA_MOUSE	409	SDPACHA -	ANRLTAH	EPPLLYDLS	DPGENYNVLE	SIEGVSPEA 451
Q9DC66_MOUSE	409	SDPACHA -	ANRLTAH	EPPLLYDLS	DPGENYNVLE	SIEGVSPEA 451
Q32K15_CANFA	410	PDPACHA - S	SSPLTAH	EPPLLFDLSI	EDPGENYNLLG	GMAEVAPEA 452
Q5BL32_BRARE	409	PDNSCSL - I	LAFLKYH	DPPLLFNLE	DPSENYNLDG	D OW 445
Q6AX40_XENLA	410	PDPDCHV -	TALLKSH	DPPLLFDLS	DPAENYNLL K	DG I PVDL 450
Q8WNR3_PIG	410	ADPACHA - S	SSPLTAH	EPPLLFDLSI	EDPGENYNLLG	GVAEVAPEV 452
Q5XFU5_MOUSE	436	GAKACDGS	GPEQHH	VAPLIFNLE	DAADEGMPLQK	GSPEY 475
Q3TYD4_MOUSE	436	GAKACDGS	GPEQHH	VAPLIFNLE	DAADEGMPLQK	GSPEY 475
ARSG_HUMAN	436	GARACDGST	GPELQH	KFPLIFNLE	DDTAEAVPLER	GGAEY 475
Q32KJ9_RAT	436	GAKACDGG	GPEOHH	VSPLIFNLE	DDAAESSPLOK	GSPEY 475
Consensus		GDPACH+S	GPLTAH	EPPLLF+L+I	DPGENYNLLK	+ I + + + SPEY

Paths in Edit Graph and Profile HMM

A path through an edit graph and the corresponding path through a profile HMM

Most used tool: PFAM

- PFAM describes *protein domains*
- Each protein domain family in Pfam has:
 - Seed alignment: manually verified multiple alignment of a representative set of sequences.
 - HMM built from the seed alignment for further database searches.
 - *Full alignment* generated automatically from the HMM
- The distinction between seed and full alignments facilitates Pfam updates.
 - Seed alignments are stable resources.
 - HMM profiles and full alignments can be updated with newly found amino acid sequences