6. Recall that a plasmid is a circular DNA molecule common in bacteria (and elsewhere). Some bacterial plasmids contain relatively long complemented palindromes (whose function is somewhat in question). Give a linear-time algorithm to find all maximal complemented palindromes in a circular string.

7. Show how to find all the k-mismatch palindromes in a string of length n in O(kn) time.

8. Tandem repeats. In the recursive method discussed in Section 9.6 (page 202) for finding the tandem repeats (no mismatches), problem 3 is solved with a linear number of constant-time common extension queries, exploiting suffix trees and lowest common ancestor computations. An earlier, equally efficient, solution to problem 3 was developed by Manber and Lorenz [307], without using suffix trees. The idea is that the problem can be solved in an amortized linear-time bound without suffix trees. In an instance of problem 3, h is held fixed while q = h + l - 1 varies over all appropriate values of l. Each forward common extension query is a problem of finding the length of the longest substring beginning at position q that matches a prefix of $S[1:n]$. All those lengths must be found in linear time. But that objective can be achieved by computing Z values (again) from Chapter 1, for the appropriate substring of S. Flesh out the details of this approach and prove the linear amortized time bound.

Now show how the backward common extensions can also be solved in linear time by computing Z values on the appropriately constructed substring of S. This substring is a bit less direct than the one used for forward extensions.

9. Complete the details for the O(kn log n + z) time algorithm for the k-mismatch tandem repeat problem. Consider both correctness and time.

10. Complete the details for the O(kn log(n/k) + z) bound for the k-mismatch tandem repeat method.

11. Try to modify the Main and Lorenz method for finding all the tandem repeats (without errors) to solve the k-mismatch tandem repeat problem in O(kn log n + z) time. If you are not successful, explain what the difficulties are and how the use of suffix trees and common ancestors solves these problems.

12. The tandem repeat method detailed in Section 9.6 finds all tandem repeats even if they are not maximal. For example, it finds six tandem repeats in the string xababababy, even though the left-most tandem repeat abab is contained in the longer tandem repeat abababab. Depending on the application, that output may not be desirable. Give a definition of maximality that would reduce the size of the output and try to give efficient algorithms for the different definitions.

13. Consider the following situation: A long string S is given and remains fixed. Then a sequence of shorter strings S_1, S_2, \ldots, S_k is given. After each string S_i is given (but before S_{i+1} is known), a number of longest common extension queries will be asked about S_i and S. Let r denote the total number of queries and n denote the total length of all the short strings. How can these on-line queries be answered efficiently? The most direct approach is to build a generalized suffix tree for both S and S_i when S_i is presented, preprocess it (do a depth-first traversal assigning dfs numbers, setting l(i) values, etc.) for the constant-time lca algorithm, and then answer the queries for S_i. But that would take $e(kS + n + r)$ time. The kS term comes from two sources: the time to build the k generalized suffix trees and the time to preprocess each of them for lca queries.

Reduce that kS term from both sides to $(S + n + r)$. Reducing the time for building all the generalized suffix trees is easy. Reducing the time for the lca preprocessing takes a bit more thought.

Find a plausible application of the above result.

PART III
Inexact Matching, Sequence Alignment, and Dynamic Programming
At this point we shift from the general area of exact matching and exact pattern discovery to the general area of inexact, approximate matching, and sequence alignment. "Approximate" means that some errors, of various types detailed later, are acceptable in valid matches. "Alignment" will be given a precise meaning later, but generally means lining up characters of strings, allowing mismatches as well as matches, and allowing characters of one string to be placed opposite spaces made in opposing strings.

We also shift from problems primarily concerning substrings to problems concerning subsequences. A subsequence differs from a substring in that the characters in a substring must be contiguous, whereas the characters in a subsequence embedded in a string need not be. For example, the string xyz is a subsequence, but not a substring, in axayac. The shift from substrings to subsequences is a natural corollary of the shift from exact to inexact matching. This shift of focus to inexact matching and subsequence comparison is accompanied by a shift in technique. Most of the methods we will discuss in Part IV, and many of the methods in Part IV, rely on the tool of dynamic programming, a tool that was not needed in Parts I and II.

Much of computational biology concerns sequence alignments

The area of approximate matching and sequence comparison is central in computational molecular biology both because of the presence of errors in molecular data and because of active mutational processes that (sub)sequence comparison methods seek to model and reveal. This will be elaborated in the next chapter and illustrated throughout the book. On the technical side, sequence alignment has become the central tool for sequence comparison in molecular biology. Henikoff and Henikoff [222] write:

Among the most useful computer-based tools in modern biology are those that involve sequence alignments of proteins, since these alignments often provide important insights into gene and protein function. There are several different types of alignments: global alignments of pairs of proteins related by common ancestry throughout their lengths, local alignments involving related segments of proteins, multiple alignments of members of protein families, and alignments made during database searches to detect homologies.

This statement provides a framework for much of Part III. We will examine in detail the four types of alignments (and several variants) mentioned above. We will also show how those different alignment models address different kinds of problems in biology. We begin, in Chapter 10, with a more detailed statement of why sequence comparison has become central to current molecular biology. But we won’t forget the role of exact matching.

1 It is a common and confusing practice in the biological literature to refer to a substring as a subsequence. But techniques and results for substring problems can be very different from techniques and results for the analogous subsequence problems, so it is important to maintain a clear distinction. In this book we will never use the term “subsequence” when “substring” is intended.
The Importance of (Sub)sequence Comparison in Molecular Biology

Sequence comparison, particularly when combined with the systematic collection, curra-
tion, and search of databases containing biomolecular sequences, has become essential in
modern molecular biology. Commenting on the (then) near-completion of the effort to
sequence the entire yeast genome (now finished), Stephen Oliver says

In a short time it will be hard to realize how we managed without the sequence data. Biology
will never be the same again. [478]

One fact explains the importance of molecular sequence data and sequence comparison
in biology.

The first fact of biological sequence analysis

The first fact of biological sequence analysis: In biomolecular sequences (DNA, RNA,
or amino acid sequences), high sequence similarity usually implies significant functional
or structural similarity.

Evolution reuses, builds on, duplicates, and modifies “successful” structures (proteins,
exons, DNA regulatory sequences, morphological features, enzymatic pathways, etc.).
Life is based on a repertoire of structured and interrelated molecular building blocks that
are shared and passed around. The same and related molecular structures and mechanisms
show up repeatedly in the genome of a single species and across a very wide spectrum of
divergent species. “Duplication with modification” [127, 128, 129, 130] is the central
paradigm of protein evolution, wherein new proteins and/or new biological functions are
fashioned from earlier ones. Dotolite emphasizes this point as follows:

The vast majority of extant proteins are the result of a continuous series of genetic duplications
and subsequent modifications. As a result, redundancy is a built-in characteristic of protein
sequences, and we should not be surprised that so many new sequences resemble already
known sequences. [129]

He adds that

... all of biology is based on an enormous redundancy ... [130]

The following quotes reinforce this view and suggest the utility of the “enormous
redundancy” in the practice of molecular biology. The first quote is from Eric Wieschaus,
cowinner of the 1995 Nobel prize in medicine for work on the genetics of Drosophila
development. The quote is taken from an Associated Press article of October 9, 1995.
Describ ing the work done years earlier, Wieschaus says

We didn’t know it at the time, but we found out everything in life is so similar, that the same
genes that work in flies are the ones that work in humans.
The final quote reflects the potential total impact on biology of the first fact and its exploitation in the form of sequence database searching. It is from an article [179] by Walter Gilbert, Nobel prize winner for the invention of a practical DNA sequencing method. Gilbert writes:

The new paradigm now emerging, is that all the 'genes' will be known (in the sense of being resident in databases available electronically), and that the starting point of biological investigation will be theoretical. An individual scientist will begin with a theoretical conjecture, only then turning to experiment to follow or test that hypothesis.

Already, hundreds (if not thousands) of journal publications appear each year that report biological research where sequence comparison and/or database search is an integral part of the work. Many such examples that support and illustrate the first fact are distributed throughout the book. In particular, several in-depth examples are concentrated in Chapters 14 and 15 where multiple string comparison and database search are discussed. But before discussing those examples, we must first develop, in the next several chapters, the techniques used for approximate matching and (sub)sequence comparison.

Caveat

The first fact of biological sequence analysis is extremely powerful, and its importance will be further illustrated throughout the book. However, there is not a one-to-one correspondence between sequence and structure or sequence and function, because the converse of the first fact is not true. That is, high sequence similarity usually implies significant structural or functional similarity (the first fact), but structural or functional similarity does not necessarily imply sequence similarity. On the topic of protein structure, F. Cohen [106] writes "... similar sequences yield similar structures, but quite distinct sequences can produce remarkably similar structures". This converse issue is discussed in greater depth in Chapter 14, which focuses on multiple sequence comparison.

11

Core String Edits, Alignments, and Dynamic Programming

11.1. Introduction

In this chapter we consider the inexact matching and alignment problems that form the core of the field of inexact matching and others that illustrate the most general techniques. Some of those problems and techniques will be further refined and extended in the next chapters. We start with a detailed examination of the most classic inexact matching problem solved by dynamic programming, the edit distance problem. The motivation for inexact matching (and, more generally, sequence comparison) in molecular biology will be a recurring theme explored throughout the rest of the book. We will discuss many specific examples of how string comparison and inexact matching are used in current molecular biology. However, to begin, we concentrate on the purely formal and technical aspects of defining and computing inexact matching.

11.2. The edit distance between two strings

Frequently, one wants a measure of the difference or distance between two strings (for example, in evolutionary, structural, or functional studies of biological strings; in textual database retrieval; or in spelling correction methods). There are several ways to formalize the notion of distance between strings. One common, and simple, formalization [389, 299], called edit distance, focuses on transforming (or editing) one string into the other by a series of edit operations on individual characters. The permitted edit operations are insertion of a character into the first string, the deletion of a character from the first string, or the substitution (or replacement) of a character in the first string with a character in the second string. For example, letting I denote the insert operation, D denote the delete operation, R the substitute (or replace) operation, and M the nonoperation of "match," then the string "winner" can be edited to become "writers" as follows:

```
R I M D M M I
v i n t n e r
w r i t e r s
```

That is, v is replaced by w, r is inserted, i matches and is unchanged since it occurs in both strings, n is deleted, t is unchanged, e matches and are unchanged, and finally s is inserted. We now more formally define edit transcripts and string transformations.

Definition A string over the alphabet l, D, R, M that describes a transformation of one string to another is called an edit transcript, or transcript for short, of the two strings.

In general, given the two input strings S_1 and S_2, and given an edit transcript for S_1 and S_2, the transformation is accomplished by successively applying the specified operation in the transcript to the next character(s) in the appropriate string(s). In particular, let next, and
next2 be pointers into S1 and S2. Both pointers begin with value one. The edit transcript is read and applied left to right. When symbol "I" is encountered, character next2 is inserted before character next1 in S1, and pointer next2 is incremented one character. When "D" is encountered, character next1 is deleted from S1 and next1 is incremented by one character. When either symbol "R" or "M" is encountered, character next1 in S1 is replaced or matched by character next2 from S2, and then both pointers are incremented by one.

Definition The edit distance between two strings is defined as the minimum number of edit operations—insertions, deletions, and substitutions—needed to transform the first string into the second. For emphasis, note that matches are not counted.

Edit distance is sometimes referred to as Levenshtein distance in recognition of the paper [299] by V. Levenshtein where edit distance was probably first discussed.

We will sometimes refer to an edit transcript that uses the minimum number of edit operations as an optimal transcript. Note that there may be more than one optimal transcript. These will be called "cooptimal" transcripts when we want to emphasize the fact that there is more than one optimal.

The edit distance problem is to compute the edit distance between two given strings, along with an optimal edit transcript that describes the transformation.

The definition of edit distance implies that all operations are done to one string only. But edit distance is sometimes thought of as the minimum number of operations done on either of the two strings to transform both of them into a common third string. This view is equivalent to the above definition, since an insertion in one string can be viewed as a deletion in the other and vice versa.

11.2.1. String alignment

An edit transcript is a way to represent a particular transformation of one string to another. An alternate (and often preferred) way is by displaying an explicit alignment of the two strings.

Definition A (global) alignment of two strings S1 and S2 is obtained by first inserting chosen spaces (or dashes), either into or at the ends of S1 and S2, and then placing the two resulting strings one above the other so that every character or space in either string is opposite a unique character or a unique space in the other string.

The term "global" emphasizes the fact that for each string, the entire string is involved in the alignment. This will be contrasted with local alignment to be discussed later. Notice that our use of the word "alignment" is now much more precise than its use in Parts I and II. There, alignment was used in the colloquial sense to indicate how one string is placed relative to the other, and spaces were not then allowed in either string.

As an example of a global alignment, consider the alignment of the strings qacbdh and qawxb shown below:

```
  q a c  d b d
  q a w x  b
```

In this alignment, character c is mismatched with w, both the ds and the x are opposite spaces, and all other characters match their counterparts in the opposite string.

11.3. Dynamic programming calculation of edit distance

Another example of an alignment is shown on page 215 where vinner and writers are aligned with each other below their edit transcript. That example also suggests a duality between alignment and edit transcript that will be developed below.

Alignment versus edit transcript

From the mathematical standpoint, an alignment and an edit transcript are equivalent ways to describe a relationship between two strings. An alignment can be easily converted to the equivalent edit transcript and vice versa, as suggested by the vinner—writers example. Specifically, two opposing characters that mismatch in an alignment correspond to a substitution in the equivalent edit transcript; a space in an alignment maps into the first string corresponds to an insertion of the opposing character into the first string; and a space in the second string corresponds to a deletion of the opposing character from the first string. Thus the edit distance of two strings is given by the alignment minimizing the number of opposing characters that mismatch plus the number of characters opposite spaces.

Although an alignment and an edit transcript are mathematically equivalent, from a modeling standpoint, an edit transcript is quite different from an alignment. An edit transcript emphasizes the putative mutational events (point mutations in the model so far) that transform one string to another, whereas an alignment only displays a relationship between the two strings. The distinction is one of process versus product. Different evolutionary models are formalized via different permitted string operations, and yet these can result in the same alignment. So an alignment alone blurs the mutational model. This is often a pedantic point but proves helpful in some discussions of evolutionary modeling.

We will switch between the language of edit transcript and alignment as is convenient. However, the language of alignment will often be preferred since it is more neutral, making no statement about process. And, the language of alignment will be more natural in the area of multiple sequence comparison.

11.3. Dynamic programming calculation of edit distance

We now turn to the algorithmic question of how to compute, via dynamic programming, the edit distance of two strings along with the accompanying edit transcript or alignment. The general paradigm of dynamic programming is probably well known to the readers of this book. However, because it is such a crucial tool and is used in so many string algorithms, it is worthwhile to explain in detail both the general dynamic programming approach and its specific application to the edit distance problem.

Definition For two strings S1 and S2, D(i, j) is defined to be the edit distance of S1[1..i] and S2[1..j].

That is, D(i, j) denotes the minimum number of edit operations needed to transform the first i characters of S1 into the first j characters of S2. Using this notation, if S1 has n letters and S2 has m letters, then the edit distance of S1 and S2 is precisely the value D(n, m).

We will compute D(n, m) by solving the more general problem of computing D(i, j) for all combinations of i and j, where i ranges from zero to n and j ranges from zero to m. This is the standard dynamic programming approach used in a vast number of computational problems. The dynamic programming approach has three essential components—the recurrence relation, the tabular computation, and the traceback. We will explain each one in turn.
11.3.1. The recurrence relation

The recurrence relation establishes a recursive relationship between the value of \(D(i, j)\) for \(i\) and \(j\) both positive, and values of \(D\) with index pairs smaller than \(i, j\). When there are no smaller indices, the value of \(D(i, j)\) must be stated explicitly in what are called the base conditions for \(D(i, j)\).

For the edit distance problem, the base conditions are

\[
D(0, 0) = i
\]

and

\[
D(0, j) = j.
\]

The base condition \(D(0, 0) = i\) is clearly correct (that is, it gives the number required by the definition of \(D(0, 0)\)) because the only way to transform the first \(i\) characters of \(S_1\) to zero characters of \(S_2\) is to delete all the \(i\) characters of \(S_1\). Similarly, the condition \(D(0, j) = j\) is correct because \(j\) characters must be inserted to convert zero characters of \(S_1\) to \(j\) characters of \(S_2\).

The recurrence relation for \(D(i, j)\) when both \(i\) and \(j\) are strictly positive is

\[
D(i, j) = \min\{D(i-1, j) + 1, D(i, j-1) + 1, D(i-1, j-1) + t(i, j)\},
\]

where \(t(i, j)\) is defined to have value 1 if \(S_1(i) \neq S_2(j)\), and \(t(i, j)\) has value 0 if \(S_1(i) = S_2(j)\).

Correctness of the general recurrence

We establish correctness in the next two lemmas using the concept of an edit transcript.

Lemma 11.3.1. The value of \(D(i, j)\) must be \(D(i-1, j) + 1, D(i, j-1) + 1, D(i-1, j-1) + t(i, j)\). There are no other possibilities.

Proof: Consider an edit transcript for the transformation of \(S_1[i..i]\) to \(S_2[i..j]\) using the minimum number of edit operations, and focus on the last symbol in that transcript. That last symbol must either be \(I, D, R, \) or \(M\). If the last symbol is an \(I\) then the last edit operation is the deletion of \(S_2(j)\) onto the end of the (transformed) first string. It follows that the symbols in the transcript before that \(I\) must specify the minimum number of edit operations to transform \(S_1[i..i]\) to \(S_2[i..j]\) (if there isn’t then the specified transformation of \(S_1[i..j]\) to \(S_2[i..j]\) would use more than the minimum number of operations). By definition, that latter transformation takes \(D(i-1, j)\) edit operations. Hence if the last symbol in the transcript is an \(I\), then \(D(i, j) = D(i-1, j) + 1\).

Similarly, if the last symbol in the transcript is a \(D\), then the last edit operation is the deletion of \(S_1(i)\) and the symbols in the transcript to the left of that \(D\) must specify the minimum number of edit operations to transform \(S_1[i..i-1]\) to \(S_2[j..j]\). By definition, that latter transformation takes \(D(i-1, j)\) edit operations. So if the last symbol in the transcript is a \(D\), then \(D(i, j) = D(i-1, j) + 1\).

If the last symbol in the transcript is an \(R\), then the last edit operation replaces \(S_1(i)\) with \(S_2(j)\), and the symbols to the left of \(R\) specify the minimum number of edit operations to transform \(S_1[i..i-1]\) to \(S_2[j..j-1]\). In that case \(D(i, j) = D(i-1, j-1) + 1\). Finally, and by similar reasoning, if the last symbol in the transcript is an \(M\), then \(D(i, j) = D(i, j-1)\) and \(D(i, j) = D(i-1, j-1)\). Using the variable \(t(i, j)\) introduced earlier [i.e., that \(t(i, j) = 0\) if \(S_1(i) = S_2(j)\); otherwise \(t(i, j) = 1\)] we can combine these last two cases as one: if the last symbol is \(R\) or \(M\), then \(D(i, j) = D(i-1, j-1) + t(i, j)\).

Since the last transcript symbol must either be \(I, D, R, \) or \(M\), we have covered all cases and established the lemma.

Now we look at the other side.

Lemma 11.3.2. \(D(i, j) \leq \min\{D(i-1, j)+1, D(i, j-1)+1, D(i-1, j-1)+t(i, j)\}\).

Proof: The reasoning is similar to that used in the previous lemma, but it achieves a somewhat different goal. The objective here is to demonstrate constructively the existence of transformations achieving each of the three values specified in the inequality. Then since all three values are feasible, their minimum is certainly feasible.

First, it is possible to transform \(S_1[i..i]\) into \(S_2[i..j]\) with exactly \(D(i-1, j)+1\) edit operations. Simply transform \(S_1[i..i]\) to \(S_2[i..j-1]\) with the minimum number of edit operations, and then use one more to insert character \(S_2(j)\) at the end. By definition, the number of edit operations in that particular way to transform \(S_1\) to \(S_2\) is exactly \(D(i, j-1)+1\). Second, it is possible to transform \(S_1[i..i]\) to \(S_2[i..j]\) with exactly \(D(i-1, j)+1\) edit operations. Transform \(S_1[i..i-1]\) to \(S_2[i..j]\) with the fewest operations, and then delete character \(S_1(i)\). The number of edit operations in that particular transformation is exactly \(D(i-1, j)+1\).

Third, it is possible to do the transformation with exactly \(D(i-1, j)+1\) edit operations, using the same argument.

Lemmas 11.3.1 and 11.3.2 immediately imply the correctness of the general recurrence relation for \(D(i, j)\).

Theorem 11.3.1. When both \(i\) and \(j\) are strictly positive, \(D(i, j) = \min\{D(i-1, j)+1, D(i, j-1)+1, D(i-1, j-1)+t(i, j)\}\).

Proof: Lemma 11.3.1 says that \(D(i, j)\) must be equal to one of the three values \(D(i-1, j)+1\), \(D(i, j-1)+1\) or \(D(i-1, j-1)+t(i, j)\). Lemma 11.3.2 says that \(D(i, j)\) must be less than or equal to the smallest of those three values. It follows that \(D(i, j)\) must therefore be equal to the smallest of those three values, and we have proven the theorem.

This completes the first component of the dynamic programming method for edit distance, the recurrence relation.

11.3.2. Tabular computation of edit distance

The second essential component of any dynamic program is to use the recurrence relations to efficiently compute the value \(D(n, m)\). We could easily code the recurrence relations and base conditions for \(D(i, j)\) as a recursive computer procedure using any programming language that allows recursion. Then we could call that procedure with input \(m, n\) and sit back and wait for the answer.¹ This top-down recursive approach to evaluating \(D(n, m)\) is simple to program but extremely inefficient for large values of \(n\) and \(m\).

The problem is that the number of recursive calls grows exponentially with \(n\) and \(m\) (an easy exercise to establish). But there are only \((n+1) \times (m+1)\) combinations of \(i\) and \(j\), so there are only \((n+1) \times (m+1)\) distinct recursive calls possible. Hence the inefficiency of the top-down approach is due to a massive number of redundant recursive calls to the procedure. A nice discussion of this phenomenon is contained in [112]. The key to a (vastly) more efficient computation of \(D(n, m)\) is to abandon the simplicity of top-down computation and instead compute bottom-up.

¹ and wait, and wait, …
Bottom-up computation

In the bottom-up approach, we first compute \(D(i, j) \) for the smallest possible values for \(i \) and \(j \), and then compute values of \(D(i, j) \) for increasing values of \(i \) and \(j \). Typically, this bottom-up computation is organized with a dynamic programming table of size \((n+1) \times (m+1)\). The table holds the values of \(D(i, j) \) for all the choices of \(i \) and \(j \) (see Figure 11.1). Note that string \(S_1 \) corresponds to the vertical axis of the table, while string \(S_2 \) corresponds to the horizontal axis. Because the ranges of \(i \) and \(j \) begin at zero, the table has a zero row and a zero column. The values in row zero and column zero are filled in directly from the base conditions for \(D(i, j) \). After that, the remaining \(n \times m \) subtable is filled in one row at time, in order of increasing \(i \). Within each row, the cells are filled in order of increasing \(j \).

To see how to fill in the subtable, note that by the general recurrence relation for \(D(i, j) \), all the values needed for the computation of \(D(1, 1) \) are known once \(D(0, 0) \), \(D(1, 0) \), and \(D(0, 1) \) have been computed. Hence \(D(1, 1) \) can be computed after the zero row and zero column have been filled in. Then, again by the recurrence relations, after \(D(1, 1) \) has been computed, all the values needed for the computation of \(D(1, 2) \) are known. Following this idea, we see that the values for row one can be computed in order of increasing index \(j \). After that, all the values needed to compute the values in row two are known, and that row can be filled in, in order of increasing \(j \). By extension, the entire table can be filled in one row at a time, in order of increasing \(i \), and in each row the values can be computed in order of increasing \(j \) (see Figure 11.2).

Time analysis

How much work is done by this approach? When computing the value for a specific cell \((i, j)\), only cells \((i - 1, j - 1)\), \((i, j - 1)\), and \((i - 1, j)\) are examined, along with the two characters \(S_1(i) \) and \(S_2(j) \). Hence, to fill in one cell takes a constant number of cell examinations, arithmetic operations, and comparisons. There are \(O(nm) \) cells in the table, so we obtain the following theorem.

Theorem 11.3.2. The dynamic programming table for computing the edit distance between a string of length \(n \) and a string of length \(m \) can be filled in with \(O(nm) \) work. Hence, using dynamic programming, the edit distance \(D(n, m) \) can be computed in \(O(nm) \) time.

The reader should be able to establish that the table could also be filled in columnwise instead of rowwise, after row zero and column zero have been computed. That is, column one could be first filled in, followed by column two, etc. Similarly, it is possible to fill in the table by filling in successive anti-diagonals. We leave the details as an exercise.

11.3.3. The traceback

Once the value of the edit distance has been computed, how is the associated optimal edit transcript extracted? The easiest way (conceptually) is to establish **pointers** in the table as the value tables are computed.

In particular, when the value of cell \((i, j)\) is computed, set a pointer from cell \((i, j)\) to cell \((i - 1, j - 1)\) if \(D(i, j) = D(i - 1, j - 1) + 1 \); set a pointer from \((i, j)\) to \((i - 1, j)\) if \(D(i, j) = D(i - 1, j) + 1 \); and set a pointer from \((i, j)\) to \((i, j - 1)\) if \(D(i, j) = D(i, j - 1) + 1 \). This rule applies to cells in row zero and column zero as well. Hence, for most objective functions, each cell in row zero points to the cell to its left, and each cell in column zero points to the cell just above it. For other cells, it is possible (and common) that more than one pointer is set from \((i, j)\). Figure 11.3 shows an example.

The pointers allow easy recovery of an optimal edit transcript: Simply follow any path of pointers from cell \((n, m)\) to cell \((0, 0)\). The edit transcript is recovered from the path by interpreting each horizontal edge in the path from cell \((i, j)\) to cell \((i, j - 1)\) as an `insert` (I) of character \(S_2(j) \) into \(S_1 \); interpreting each vertical edge, from \((i, j)\) to \((i, j - 1)\), as a `deletion` (D) of \(S_1(i) \) from \(S_1 \); and interpreting each diagonal edge, from \((i, j)\) to \((i - 1, j - 1)\), as a `match` (M) if \(S_1(i) = S_2(j) \) and as a `substitution` (R) if \(S_1(i) \neq S_2(j) \). That this traceback path specifies an optimal edit transcript can be proved in a manner similar to the way that the recurrences for edit distances were established. We leave this as an exercise.

Alternatively, in terms of aligning \(S_1 \) and \(S_2 \), each horizontal edge in the path specifies a space inserted into \(S_1 \); each vertical edge specifies a space inserted into \(S_2 \); and each diagonal edge specifies either a match or a mismatch, depending on the specific characters.

For example, there are three traceback paths from cell \((7, 7)\) to cell \((0, 0)\) in the example given in Figure 11.3. The paths are identical from cell \((7, 7)\) to cell \((3, 3)\), at which point...
it is possible to either go up or to go diagonally. The three optimal alignments are:

\[
\text{write}\;\text{writen}\;\text{write}
\]
\[
\text{vintner}\;\text{vintner}\;\text{vintner}
\]

and

\[
\text{write}\;\text{writen}\;\text{writen}
\]
\[
\text{vintner}\;\text{vintner}\;\text{vintner}
\]

If there is more than one pointer from cell \((n, m)\), then a path from \((n, m)\) to \((0, 0)\) can start with either of those pointers. Each of them is on a path from \((n, m)\) to \((0, 0)\). This property is repeated from any cell encountered. Hence a traceback path from \((n, m)\) to \((0, 0)\) can start simply by following any pointer out of \((n, m)\); it can then be extended by following any pointer out of any cell encountered. Moreover, every cell except \((0, 0)\) has a pointer out of it, so no path from \((n, m)\) can get stuck. Since any path of pointers from \((n, m)\) to \((0, 0)\) specifies an optimal edit transcript or alignment, we have the following:

Theorem 11.3.3. Once the dynamic programming table with pointers has been computed, an optimal edit transcript can be found in \(O(n + m)\) time.

We have now completely described the three crucial components of the general dynamic programming paradigm, as illustrated by the edit distance problem. We will later consider ways to increase the speed of the solution and decrease its needed space.

The pointers represent all optimal edit transcripts.

The pointers that are built up while computing the values of the table do more than allow one optimal transcript (or optimal alignment) to be retrieved. They allow all optimal transcripts to be retrieved.

Theorem 11.3.4. Any path from \((n, m)\) to \((0, 0)\) following pointers established during the computation of \(D(i, j)\) specifies an edit transcript with the minimum number of edit operations. Conversely, any optimal edit transcript is specified by such a path. Moreover, since a path describes only one transcript, the correspondence between paths and optimal transcripts is one-to-one.

The theorem can be proven by essentially the same reasoning that established the correctness of the recurrence relations for \(D(i, j)\), and this is left to the reader. An alternative way to find the optimal edit transcript(s), without using pointers, is discussed in Exercise 9. Once the pointers have been established, all the cooptimal edit transcripts can be enumerated in \(O(n + m)\) time per transcript. That is the focus of Exercise 12.

11.4. Edit graphs

It is often useful to represent dynamic programming solutions of string problems in terms of a weighted edit graph.

Definition

Given two strings \(S_1\) and \(S_2\) of lengths \(n\) and \(m\), respectively, a weighted edit graph has \((n + 1) \times (m + 1)\) nodes, each labeled with a distinct pair \((i, j)\) \(0 \leq i \leq n, 0 \leq j \leq m\). The specific edges and their edge weights depend on the specific string problem.

In the case of the edit distance problem, the edit graph contains a directed edge from each node \((i, j)\) to each of the nodes \((i, j + 1)\), \((i + 1, j)\), and \((i + 1, j + 1)\), provided those nodes exist. The weight on the first two of these edges is one; the weight on the third (diagonal) edge is \(t(i + 1, j + 1)\). Figure 11.4 shows the edit graph for strings CAN and ANN.

The central property of an edit graph is that any shortest path (one whose total weight is minimum) from start node \((0, 0)\) to destination node \((n, m)\) specifies an edit transcript with the minimum number of edit operations. Equivalently, any shortest path specifies a global alignment of minimum total weight. Moreover, the following theorem and corollary can be stated.

Theorem 11.4.1. An edit transcript for \(S_1, S_2\) has the minimum number of edit operations if and only if it corresponds to a shortest path from \((0, 0)\) to \((n, m)\) in the edit graph.

Corollary 11.4.1. The set of all shortest paths from \((0, 0)\) to \((n, m)\) in the edit graph exactly specifies the set of all optimal edit transcripts of \(S_1, S_2\). Equivalently, it specifies all the optimal (minimum weight) alignments of \(S_1, S_2\).

Viewing dynamic programming as a shortest path problem is often useful because there
are many tools for investigating and compactly representing shortest paths in graphs. This view will be exploited in Section 13.2 when suboptimal solutions are discussed.

11.5. Weighted edit distance

11.5.1. Operation weights

An easy, yet crucial, generalization of edit distance is to allow an arbitrary weight or cost or score\(^2\) to be associated with every edit operation, as well as with a match. Thus, any insertion or deletion has a weight denoted \(d\), a substitution has a weight \(r\), and a match has a weight \(e\) (which is usually small compared to the other weights and is often zero). Equivalently, an operation-weight alignment is one where each mismatch costs \(r\), each match costs \(e\), and each space costs \(d\).

Definition With arbitrary operation weights, the operation-weight edit distance problem is to find an edit transcript that transforms string \(S_1\) into \(S_2\) with the minimum total operation weight.

In these terms, the edit distance problem we have considered so far is just the problem of finding the minimum operation-weight edit transcript when \(d = 1\), \(r = 1\), and \(e = 0\). But, for example, if each mismatch has a weight of 2, each space has a weight of 4, and each match a weight of 1, then the alignment

\[
\begin{align*}
\text{write} & \quad \text{vintner} \\
\text{r} & \quad \text{r}
\end{align*}
\]

has a total weight of 17 and is an optimal alignment.

Because the objective function is to minimize total weight and because a substitution can be achieved by a deletion followed by an insertion, if substitutions are to be allowed then a substitution weight should be less than the sum of the weights for a deletion plus an insertion.

Computing operation-weight edit distance

The operation-weight edit distance problem for two strings of length \(n\) and \(m\) can be solved in \(O(nm)\) time by a minor extension of the recurrences for edit distance. \(D(i, j)\) now denotes the minimum total weight for edit operations transforming \(S_1[1..i]\) to \(S_2[1..j]\).

We again use \(t(i, j)\) to handle both substitution and equality, where now \(t(i, j) = e\) if \(S_1(i) = S_2(j)\); otherwise \(t(i, j) = r\). Then the base conditions are

\[
D(i, 0) = i \times d
\]

and

\[
D(0, j) = j \times d.
\]

The general recurrence is

\[
D(i, j) = \min[D(i - 1, j) + d, D(i, j - 1) + d, D(i - 1, j - 1) + t(i, j)].
\]

\(\text{3}\) The terms "weight" or "cost" are heavily used in the computer science literature, while the term "score" is used in the biological literature. We will use these terms more or less interchangeably in discussing algorithms, but the term "score" will be used when talking about specific biological applications.

11.6. STRING SIMILARITY

The operation-weight edit distance problem can also be represented and solved as a shortest path problem on a weighted edit graph, where the edge weights correspond in the natural way to the weights of the edit operations. The details are straightforward and are thus left to the reader.

11.6.2. Alphabet-weight edit distance

Another critical, yet simple, generalization of edit distance is to allow the weight or score of a substitution to depend on exactly which character in the alphabet is being removed and which is being added. For example, it may be more costly to replace an \(A\) with a \(T\) than with a \(G\). Similarly, we may want the weight of a deletion or insertion to depend on exactly which character in the alphabet is being deleted or inserted. We call this form of edit distance the alphabet-weight edit distance to distinguish it from the operation-weight edit distance problem.

The operation-weight edit distance problem is a special case of the alphabet-weight problem, and it is trivial to modify the previous recurrence relations (for operation-weight edit distance) to compute alphabet-weight edit distance. We leave that as an exercise. We will usually use the simple term weighted edit distance when we mean the alphabet-weight version. Notice that in weighted edit distance, the weight of an operation depends on what characters are involved in an operation but not on where those characters appear in the string.

When comparing proteins, "the edit distance" almost always means the alphabet-weight edit distance over the alphabet of amino acids. There is an extensive literature (and continuing research) on what scores should be used for operations on amino acid characters and how they should be determined. The dominant amino acid scoring schemes are now the PAM matrices of Dayhoff [122] and the newer BLOSSUM scoring matrices of the Henikoffs [222], although these matrices are actually defined in terms of a maximization problem (similarity) rather than edit distance.\(^3\) Recently, a mathematical theory has been developed [16, 262] concerning the way scores should be interpreted and how a scoring scheme should relate both to the data it is obtained from and to the types of searches it is designed for. We will briefly discuss this issue again in Section 13.11.2.

When comparing DNA strings, unweighted or operation-weight edit distance is more often computed. For example, the popular database searching program, BLAST, scores identities as +5 and mismatches as −4. However, alphabet-weighted edit distance is also of interest and alphabet-based scoring schemes for DNA have been suggested (for example see [252]).

11.6. String similarities

Edit distance is one of the ways that the relatedness of two strings has been formalized. An alternate, and often preferred, way of formalizing the relatedness of two strings is to measure their similarity rather than their distance. This approach is chosen in most biological applications for technical reasons that should be clear later. When focusing on
similarity, the language of alignment is usually more convenient than the language of edit transcript. We now begin to develop a precise definition of similarity.

Definition Let Σ be the alphabet used for strings S_1 and S_2, and let Σ' be Σ with the added character "." denoting a space. Then, for any two characters x, y in Σ', $s(x, y)$ denotes the value (or score) obtained by aligning character x against character y.

Definition For a given alignment A of S_1 and S_2, let S'_1 and S'_2 denote the strings after the chosen insertion of spaces, and let l denote the (equal) length of the two strings S'_1 and S'_2 in A. The value of alignment A is defined as $\sum_{i=1}^{l} s(S'_1(i), S'_2(i))$.

That is, every position i in A specifies a pair of opposing characters in the alphabet Σ', and the value of A is obtained by summing the value contributed by each pair.

For example, let $\Sigma = \{a, b, c, d\}$ and let the pairwise scores be defined in the following matrix:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>-4</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>3</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then the alignment

```
    a  b  c  d  d  d
   c  a  b  b  d  d
```

has a total value of $0 + 1 + 2 + 0 + 3 + 3 - 1 = 4$.

In string similarity problems, scoring matrices usually set $s(x, y)$ to be greater than or equal to zero if characters x, y of Σ' match and less than zero if they mismatch. With such a scoring scheme, one seeks an alignment with as large a value as possible. That alignment will emphasize matches (or similarities) between the two strings while penalizing mismatches or inserted spaces. Of course, the meaningfulness of the resulting alignment may depend heavily on the scoring scheme used and how match scores compare to mismatch and space scores. Numerous character-pair scoring matrices have been suggested for proteins and for DNA [81, 122, 127, 222, 252, 400], and no single scheme is right for all applications. We will return to this issue in Sections 13.1, 15.7, and 15.10.

Definition Given a pairwise scoring matrix over the alphabet Σ', the similarity of two strings S_1 and S_2 is defined as the value of the alignment A of S_1 and S_2 that maximizes total alignment value. This is also called the optimal alignment value of S_1 and S_2.

String similarity is clearly related to alphabet-weight edit distance, and depending on the specific scoring matrix involved, one can often transform one problem into the other. An important difference between similarity and weighted edit distance will become clear in Section 11.7, after we discuss local alignment.

11.6.1. Computing similarity

The similarity of two strings S_1 and S_2, and the associated optimal alignment, can be computed by dynamic programming with recurrences that should by now be very intuitive.

11.6. STRING SIMILARITY

Definition $V(i, j)$ is defined as the value of the optimal alignment of prefixes $S_1[1..i]$ and $S_2[1..j]$.

Recall that a dash ("-")) is used to represent a space inserted into a string. The base conditions are

$$V(0, j) = \sum_{k=1}^{j} S_2(k)$$

and

$$V(i, 0) = \sum_{k=1}^{i} S_1(k).$$

For i and j both strictly positive, the general recurrence is

$$V(i, j) = \max\{V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1, j) + s(S_1(i), -), V(i, j-1) + s(-, S_2(j))\}.$$

The correctness of this recurrence is established by arguments similar to those used for edit distance. In particular, in any alignment A, there are three possibilities: characters $S_1(i)$ and $S_2(j)$ are in the same position (opposite each other), $S_1(i)$ is in a position after $S_2(j)$, or $S_1(i)$ is in a position before $S_2(j)$. The correctness of the recurrence is based on that case analysis. Details are left to the reader.

If S_1 and S_2 are of length n and m, respectively, then the value of their optimal alignment is given by $V(n, m)$. That value, and the entire dynamic programming table, can be obtained in $O(nm)$ time, since only three comparisons and arithmetic operations are needed per cell.

By leaving pointers while filling in the table, as was done with edit distance, an optimal alignment can be constructed by following any path of pointers from cell (n, m) to cell $(0, 0)$. So the optimal (global) alignment problem can be solved in $O(nm)$ time, the same time as for edit distance.

11.6.2. Special cases of similarity

By choosing an appropriate scoring scheme, many problems can be modeled as special cases of optimal alignment or similarity. One important example is the **longest common subsequence problem**.

Definition In a string S, a **subsequence** is defined as a subset of the characters of S arranged in their original "relative" order. More formally, a subsequence of a string S of length n is specified by a list of indices $i_1 < i_2 < i_3 < \ldots < i_k$, for some $k \leq n$. The subsequence specified by this list of indices is the string $S(i_1)S(i_2)S(i_3)\ldots S(i_k)$.

To emphasize again, a subsequence need not consist of contiguous characters in S, whereas the characters of a **substring** must be contiguous. Of course, a substring satisfies the definition for a subsequence. For example, "in" is a subsequence of "winters" but not a substring, whereas "inter" is both a substring and a subsequence.

Definition Given two strings S_1 and S_2, a **common subsequence** is a subsequence that appears both in S_1 and S_2. The **longest common subsequence problem** is to find a longest common subsequence (lcs) of S_1 and S_2.

4 The distinction between subsequence and substring is often lost in the biological literature. But algorithms for substrings are usually quite different in spirit and efficiency than algorithms for subsequences, so the distinction is an important one.
The LCS problem is important in its own right, and we will discuss some of its uses and some ideas for improving its computation in Section 12.5. For now we show that it can be modeled and solved as an optimal alignment problem.

Theorem 11.6.1. With a scoring scheme that scores a one for each match and a zero for each mismatch or space, the matched characters in an alignment of maximum value form a longest common subsequence.

The proof is immediate and is left to the reader. It follows that the longest common subsequence of strings of lengths n and m, respectively, can be computed in $O(nm)$ time.

At this point we see the first of many differences between substring and subsequence problems and why it is important to clearly distinguish between them. In Section 7.4 we established that the longest common substring could be found in $O(n + m)$ time, whereas here the bound established for finding longest common subsequence is $O(n \times m)$ (although this bound can be reduced somewhat). This is typical - substring and subsequence problems are generally solved by different methods and have different time and space complexities.

11.6.3. Alignment graphs for similarity

As was the case for edit distance, the computation of similarity can be viewed as a path problem on a directed acyclic graph called an alignment graph. The graph is the same as the edit graph considered earlier, but the weights on the edges are the specific values for aligning a specific pair of characters or a character against a space. The start node of the alignment graph is again the node associated with cell $(0, 0)$, and the destination node is associated with cell (n, m) of the dynamic programming table, but the optimal alignment comes from the longest start to destination path rather than from the shortest path. It is again true that the longest paths in the alignment graph are in one-to-one correspondence with the optimal (maximum value) alignments. In general, computing longest paths in graphs is difficult, but for directed acyclic graphs the longest path is found in time proportional to the number of edges in the graph, using a variant of dynamic programming (which should come as no surprise). Hence for alignment graphs, the longest path can be found in $O(nm)$ time.

11.6.4. End-space free variant

There is a commonly used variant of string alignment called end-space free alignment. In this variant, any spaces at the end or the beginning of the alignment contribute a weight of zero, no matter what weight other spaces contribute. For example, in the alignment

```
  c a c  d b d
  l c a b b b b
```

the two spaces at the left end of the alignment are free, as is the single space at the right end.

Making end spaces free in the objective function encourages one string to align in the interior of the other, or the suffix of one string to align with a prefix of the other. This is desirable when one believes that those kinds of alignments reflect the "true" relationship of the two strings. Without a mechanism to encourage such alignments, the optimal alignment might have quite a different shape and not capture the desired relationship.

One example where end-spaces should be free is in the shotgun sequence assembly (see Sections 16.14 and 16.15). In this problem, one has a large set of partially overlapping substrings that come from many copies of one original but unknown string; the problem is to use comparisons of pairs of substrings to infer the correct original string. Two random substrings from the set are unlikely to be neighbors in the original string, and this is reflected by a low end-space free alignment score for those two substrings. But if two substrings do overlap in the original string, then a "good-sized" suffix of one should align to a "good-sized" prefix of the other with only a small number of spaces and mismatches (reflecting a small percentage of sequencing errors). This overlap is detected by an end-space free weighted alignment with high score. Similarly the case when one substring contains another can be detected in this way. The procedure for deducing candidate neighbor pairs is thus to compute the end-space free alignment between every pair of substrings; those pairs with high scores are then the best candidates. We will return to shotgun sequencing and extend this discussion in Part IV, Section 16.14.

To implement free end spaces in computing similarity, use the recurrences for global alignment (where all spaces count) detailed on page 227, but change the base conditions to $V(i, 0) = V(0, j) = 0$, for every i and j. That takes care of any spaces on the left end of the alignment. Then fill in the table as in the case of global alignment. However, unlike global alignment, the value of the optimal alignment is not necessarily found in cell (n, m) of V. Rather, the value of the optimal alignment with free ends is the maximum value over all cells in row n or column m. Cells in row n correspond to alignments where the last character of string S_1 contributes to the value of the alignment, but characters of S_2 to its right do not. Those characters are opposite end spaces, which are free. Cells in column m have a similar characterization. Clearly, optimal alignment with free end spaces is solved in $O(nm)$ time, the same time as for global alignment.

11.6.5. Approximate occurrences of P in T

We now examine another important variant of global alignment.

Definition Given a parameter δ, a substring T' of T is said to be an approximate occurrence of P if and only if the optimal alignment of P to T' has value at least δ.

The problem of determining if there is an approximate occurrence of P in T is an important and natural generalization of the exact matching problem. It can be solved as follows: Use the same recurrences (given on page 227) as for global alignment between P and T and change only the base condition for $V(0, j)$ to $V(0, j) = 0$ for all j. Then fill in the table (leaving the standard backpointers). Using this variant of global alignment, the following theorem can be proved.

Theorem 11.6.2. There is an approximate occurrence of P in T ending at position j of T if and only if $V(n, j) \geq \delta$. Moreover, $T[k..]$ is an approximate occurrence of P in T if and only if $V(n, j) \geq \delta$ and there is a path of backpointers from cell (n, j) to cell $(0, k)$.

Clearly, the table can be filled in using $O(nm)$ time, but if all approximate occurrence of P in T are to be explicitly output, then $\Theta(nm)$ time may not be sufficient. A sensible compromise is to identify every position j in T such that $V(n, j) \geq \delta$, and then for each such j, explicitly output only the shortest approximate occurrence of P that ends at position j. That substring T' is found by traversing the backpointers from (n, j) until a
cell in row zero is reached, breaking ties by choosing a vertical pointer over a diagonal one and a diagonal one over a horizontal one.

11.7. Local alignment: finding substrings of high similarity

In many applications, two strings may not be highly similar in their entirety but may contain regions that are highly similar. The task is to find and extract a pair of regions, one from each of the two given strings, that exhibit high similarity. This is called the local alignment or local similarity problem and is defined formally below.

Local alignment problem Given two strings S_1 and S_2, find substrings α and β of S_1 and S_2, respectively, whose similarity (optimal global alignment value) is maximum over all pairs of substrings from S_1 and S_2. We use v^* to denote the value of an optimal solution to the local alignment problem.

For example, consider the strings $S_1 = pqraxabestq$ and $S_2 = xyaxbaestl$. If we give each match a value of 2, each mismatch a value of 2, and each space a value of −1, then the two substrings $\alpha = axabes$ and $\beta = axbaes$ of S_1 and S_2, respectively, have the following optimal (global) alignment

\[
\begin{align*}
a &\quad x &\quad a &\quad b &\quad e &\quad s \\
a &\quad x &\quad b &\quad a &\quad c &\quad s
\end{align*}
\]

which has a value of 8. Furthermore, over all choices of pairs of substrings, one from each of the two strings, those two substrings have maximum similarity (for the chosen scoring scheme). Hence, for that scoring scheme, the optimal local alignment of S_1 and S_2 has value 8 and is defined by substrings α and β.

It should be clear why local alignment is defined in terms of similarity, which maximizes an objective function, rather than in terms of edit distance, which minimizes an objective. When one seeks a pair of substrings to maximize distance, the optimal pairs would be exactly matching substrings under most natural scoring schemes. But the matching substrings might be just a single character long and would not identify a region of high similarity. A formulation such as local alignment, where matches contribute positively and mismatches and spaces contribute negatively, is more likely to find more meaningful regions of high similarity.

Why local alignment?

Global alignment of protein sequences is often meaningful when the two strings are members of the same protein family. For example, the protein cytochrome c has almost the same length in most organisms that produce it, and one expects to see a relationship between two cytochromes from any two different species over the entire length of the two strings. The same is true of proteins in the globin family, such as myoglobin and hemoglobin. In these cases, global alignment is meaningful. When trying to deduce evolutionary history by examining protein sequence similarities and differences, one usually compares proteins in the same sequence family, and so global alignment is typically meaningful and effective in those applications.

However, in many biological applications, local similarity (local alignment) is far more meaningful than global similarity (global alignment). This is particularly true when long stretches of anonymous DNA are compared, since only some internal sections of those strings may be related. When comparing protein sequences, local alignment is also critical because proteins from very different families are often made up of the same structural or functional subunits (motifs or domains), and local alignment is appropriate in searching for these (unknown) subunits. Similarly, different proteins are often made from related motifs that form the inner core of the protein, but the motifs are separated by outside surface loopsing regions that can be quite different in different proteins.

A very interesting example of conserved domains comes from the proteins encoded by the *homeobox* genes. Homeobox genes [319, 381] show up in a wide variety of species, from fruit flies to frogs to humans. These genes regulate high-level embryonic development, and a single mutation in these genes can transform one body part into another (one of the original mutation experiments causes fruit fly antenna to develop as legs, but it doesn’t seem to bother the fly very much). The protein sequences that these genes encode are very different in each species, except in one region called the homeodomain. The homeodomain consists of about sixty amino acids that form the part of the regulatory protein that binds to DNA. Oddly, homeodomains made by certain insect and mammalian genes are particularly similar, showing about 50 to 95% identity in alignments without spaces. Protein-DNA binding is central in how these proteins regulate embryo development and cell differentiation. So the amino acid sequence in the most biologically critical part of those proteins is highly conserved, whereas the other parts of the protein sequences show very little similarity. In cases such as these, local alignment is certainly a more appropriate way to compare protein sequences than is global alignment.

Local alignment protein is additionally important because particular isolated characters of related proteins may be more highly conserved than the rest of the protein (for example, the amino acids at the active site of an enzyme or the amino acids in the hydrophobic core of a globular protein are the most highly conserved). Local alignment will more likely detect these conserved characters than will global alignment. A good example is the family of serine proteases where a few isolated, conserved amino acids characterize the family. Another example comes from the Helix-Turn-Helix motif, which occurs frequently in proteins that regulate DNA transcription by binding to DNA. The tenth position of the Helix-Turn-Helix motif is very frequently occupied by the amino acid glycine, but the rest of the motif is more variable.

The following quote from C. Chothia [101] further emphasizes the biological importance of protein domains and hence of local string comparison.

Extant proteins have been produced from the original set not just by point mutations, insertions and deletions but also by combinations of genes to give chimeric proteins. This is particularly true of the very large proteins produced in the recent stages of evolution. Many of these are built of different combinations of protein domains that have been selected from a relatively small repertoire.

Doolittle [129] summarizes the point: "The underlying message is that one must be alert to regions of similarity even when they occur embedded in an overall background of dissimilarity."

Thus, the dominant viewpoint today is that local alignment is the most appropriate type of alignment for comparing proteins from different protein families. However, it has also been pointed out [359, 360] that one often sees extensive global similarity in pairs of protein strings that are first recognized as being related by strong local similarity. There are also suggestions [316] that in some situations global alignment is more effective than local alignment in exposing important biological commonalities.
11.7.1. Computing local alignment

Why not look for regions of high similarity in two strings by first globally aligning those strings? A global alignment between two long strings will certainly be influenced by regions of high similarity, and an optimal global alignment might well align those corresponding regions with each other. But more often, local regions of high local similarity would get lost in the overall optimal global alignment. Therefore, to identify high local similarity it is more effective to search explicitly for local similarity.

We will show that if the lengths of strings \(S_1 \) and \(S_2 \) are \(n \) and \(m \), respectively, then the local alignment problem can be solved in \(O(nm) \) time, the same time as for global alignment. This efficiency is surprising because there are \(\Theta(n^2m^2) \) pairs of substrings, so even if a global alignment could be computed in constant time for each chosen pair, the time bound would be \(\Theta(n^2m^2) \). In fact, if we naively use \(O(kl) \) for the bound on the time to align strings of lengths \(k \) and \(l \), then the resulting time bound for the local alignment problem would be \(O(n^2m^2) \), instead of the \(O(nm) \) bound that we will establish. The \(O(nm) \) time bound was obtained by Temple Smith and Michael Waterman [411] using the algorithm we will describe below.

In the definition of local alignment given earlier, any scoring scheme was permitted for the global alignment of two chosen substrings. One slight restriction will help in computing local alignment. We assume that the global alignment of two empty strings has value zero. That assumption is used to allow the local alignment algorithm to choose two empty substrings for \(\alpha \) and \(\beta \). Before describing the solution to the local alignment problem, it will be helpful to consider first a more restricted version of the problem.

Definition Given a pair of indices \(i \leq n \) and \(j \leq m \), the local suffix alignment problem is to find a (possibly empty) suffix \(\alpha \) of \(S_1[i..] \) and a (possibly empty) suffix \(\beta \) of \(S_2[j..] \) such that \(\nu(\alpha, \beta) \) is the maximum over all pairs of suffixes of \(S_1[i..] \) and \(S_2[j..] \). We use \(v(i, j) \) to denote the value of the optimal local suffix alignment for the given index pair \(i, j \).

For example, suppose the objective function counts 2 for each match and -1 for each mismatch or space. If \(S_1 = abcdex \) and \(S_2 = xcdexd \), then \(v(3, 4) = 2 \) (the two cs match), \(v(5, 5) = 1 \) (cx aligns with cd), \(v(5, 5) = 3 \) (xd aligns with xcd), and \(v(6, 6) = 5 \) (d aligns with xcd).

Since the definition allows either or both of the suffixes to be empty, \(v(i, j) \) is always greater than or equal to zero.

The following theorem shows the relationship between the local alignment problem and the local suffix alignment problem. Recall that \(v^* \) is the value of the optimal local alignment for two strings of length \(n \) and \(m \).

Theorem 11.7.1. \(v^* = \max[v(i, j) : i \leq n, j \leq m] \).

Proof Certainly \(v^* \) \(\geq \max[v(i, j) : i \leq n, j \leq m] \), because the optimal solution to the local suffix alignment problem for any \(i, j \) is a feasible solution to the local alignment problem. Conversely, let \(\alpha, \beta \) be the substrings in an optimal solution to the local alignment problem and suppose \(\alpha \) ends at position \(i^* \), and \(\beta \) ends at \(j^* \). Then \(\alpha, \beta \) also defines a local suffix alignment for index pair \(i^*, j^* \), and so \(v^* \leq v(i^*, j^*) \leq \max[v(i, j) : i \leq n, j \leq m] \), and both directions of the lemma are established.

Theorem 11.7.1 only specifies the value \(v^* \), but its proof makes clear how to find substrings whose alignment have that value. In particular,

Theorem 11.7.2. If \(i^*, j^* \) is an index pair maximizing \(v(i, j) \) over all \(i, j \) pairs, then a pair of substrings solving the local suffix alignment problem for \(i^*, j^* \) also solves the local alignment problem.

Thus a solution to the local suffix alignment problem solves the local alignment problem. We now turn our attention to the problem of finding \(\max[v(i, j) : i \leq n, j \leq m] \) and a pair of strings whose alignment has maximum value.

Theorem 11.7.3. For \(i > 0 \) and \(j > 0 \), the proper recurrence for \(v(i, j) \) is:

\[
v(i, j) = \max\{0, v(i-1, j-1) + s(S_1[i..], S_2[j..])\},
\]

\[
v(i-1, j) + s(S_1[..i-1], S_2[j..]),
\]

\[
v(i, j-1) + s(S_1[i..], S_2[..j-1]).
\]

Proof The argument is similar to the justifications of previous recurrence relations. Let \(\alpha \) and \(\beta \) be the substrings of \(S_1 \) and \(S_2 \) whose global alignment establishes the optimal local alignment. Since \(\alpha \) and \(\beta \) are permitted to be empty suffixes of \(S_1[1..i] \) and \(S_2[1..j] \), it is correct to include 0 as a candidate value for \(v(i, j) \). However, if the optimal \(\alpha \) is not empty, then character \(S_1[i] \) must either be aligned with a space or with character \(S_2[j] \). Similarly, if the optimal \(\beta \) is not empty, then \(S_2[j] \) is aligned with a space or with \(S_1[i] \). So we justify the recurrence based on the way characters \(S_1[i] \) and \(S_2[j] \) may be aligned in the optimal local suffix alignment for \(i, j \).

If \(S_1[i] \) is aligned with \(S_2[j] \) in the optimal local suffix alignment, then those two characters contribute \(s(S_1[i..], S_2[j..]) \) to \(v(i, j) \), and the remainder of \(v(i, j) \) is determined by the local suffix alignment for indices \(i-1 \), \(j-1 \). That local suffix alignment must be optimal and so has value \(v(i-1, j-1) \). Therefore, if \(S_1[i] \) and \(S_2[j] \) are aligned with each other, \(v(i, j) = v(i-1, j-1) + s(S_1[i..], S_2[j..]) \).

If \(S_1[i] \) is aligned with a space, then by similar reasoning \(v(i, j) = v(i-1, j) + s(S_1[..i-1], S_2[j..]) \), and if \(S_2[j] \) is aligned with a space then \(v(i, j) = v(i, j-1) + s(S_1[i..], ..) \).

Since all cases are exhausted, we have proven that \(v(i, j) \) must either be zero or be equal to one of the three other terms in the recurrence.

On the other hand, for each of the four terms in the recurrence, there is a way to choose suffixes of \(S_1[1..i] \) and \(S_2[1..j] \) so that an alignment of those two suffixes has the value given by the associated term. Hence the optimal suffix alignment value is at least the maximum of the four terms in the recurrence. Having proved that \(v(i, j) \) must be one of the four terms, and that it must be greater than or equal to the maximum of the four terms, it follows that \(v(i, j) \) must be equal to the maximum which proves the theorem.

The recurrences for local suffix alignment are almost identical to those for global alignment. The only difference is the inclusion of zero in the case of local suffix alignment. This makes intuitive sense. In both global alignment and local suffix alignment of prefixes \(S_1[1..i] \) and \(S_2[1..j] \) the end characters of any alignment are specified, but in the case of suffix alignment, any number of initial characters can be ignored. The zero in the recurrence implements this, acting to "restart" the recurrence.

Given Theorem 11.7.2, the method to compute \(v^* \) is to compute the dynamic programming table for \(v(i, j) \) and then find the largest value in any cell in the table, say in cell \((i^*, j^*)\). As usual, pointers are created while filling in the values of the table. After cell
(i*, j*) is found, the substrings α and β giving the optimal local alignment of S₁ and S₂ are found by tracing back the pointers from cell (i*, j*) until an entry (i', j') is reached that has value zero. Then the optimal local alignment substrings are α = S₁[i..i*] and β = S₂[j..j*].

Time analysis

Since it takes only four comparisons and three arithmetic operations per cell to compute v(i, j), it takes only O(nm) time to fill in the entire table. The search for v* and the traceback clearly require only O(nm) time as well, so we have established the following desired theorem:

Theorem 11.7.4. For two strings S₁ and S₂ of lengths n and m, the local alignment problem can be solved in O(nm) time, the same time as for global alignment.

Recall that the pointers in the dynamic programming table for edit distance, global alignment, and similarity encode all the optimal alignments. Similarly, the pointers in the dynamic programming table for local alignment encode the optimal local alignments as follows.

Theorem 11.7.5. All optimal local alignments of two strings are represented in the dynamic programming table for v(i, j) and can be found by tracing any pointers back from any cell with value v*.

We leave the proof as an exercise.

11.7.3. Three final comments on local alignment

Terminology for local and global alignment

In the biological literature, global alignment (similarity) is often referred to as a Needleman–Wunsch [347] alignment after the authors who first discussed global similarity. Local alignment is often referred to as a Smith–Waterman [411] alignment after the authors who introduced local alignment. There is, however, some confusion in the literature between Needleman–Wunsch and Smith–Waterman as problem statements and as solution methods. The original solution given by Needleman–Wunsch runs in cubic time and is rarely used. Hence “Needleman–Wunsch” usually refers to the global alignment problem. The Smith–Waterman method runs in quadratic time and is commonly used, so “Smith–Waterman” often refers to their specific solution as well as to the problem statement. But there are solution methods to the (Smith–Waterman) local alignment problem that differ from the Smith–Waterman solution and yet are sometimes also referred to as “Smith–Waterman”.

Using Smith–Waterman to find several regions of high similarity

Very often in biological applications it is not sufficient to find just a single pair of substrings of input strings of S₁ and S₂ with the optimal local alignment. Rather, what is required is to find all or “many” pairs of substrings that have similarity above some threshold. A specific application of this kind will be discussed in Section 18.2, and the general problem will be studied much more deeply in Section 13.2. Here we simply point out that, in practice, the dynamic programming table used to solve the local suffix alignment problem is often used to find additional pairs of substrings with “high” similarity. The key observation is that for any cell (i, j) in the table, one can find a pair of substrings of S₁ and S₂ (by traceback) with similarity (global alignment value) of v(i, j). Thus, an easy way to look for a set of highly similar substrings is to find a set of cells in the table with a value above some set threshold. Not all similar substrings will be identified in this way, but this approach is common in practice.

The need for good scoring schemes

The utility of optimal local alignment is affected by the scoring scheme used. For example, if matches are scored as one, and mismatches and spaces as zero, then the optimal local alignment will be determined by the longest common subsequence. Conversely, if mismatches and spaces are given large negative scores, and each match is given a score of one, then the optimal local alignment will be the longest common substring. In most cases, neither of these is the local alignment of interest and some care is required to find an application-dependent scoring scheme that yields meaningful local alignments. For local alignment, the entries in the scoring matrix must have an average score that is negative. Otherwise the resulting “local” optimal alignment tends to be a global alignment. Recently, several authors have developed a rather elegant theory of what scoring schemes for local alignment mean in the context of database search and how they should be derived.

We will briefly discuss this theory in Section 15.11.2.

11.8. Gaps

11.8.1. Introduction to Gaps

Until now the central constructs used to measure the value of an alignment (and to define similarity) have been *matches, mismatches, and spaces*. Now we introduce another important construct, *gaps*. Gaps help create alignments that better conform to underlying biological models and more closely fit patterns that one expects to find in meaningful alignments.

Definition A gap is any maximal, consecutive run of spaces in a single string of a given alignment.

A gap may begin before the start of S, in which case it is bordered on the right by the first character of S, or it may begin after the end of S, in which case it is bordered on the left by the last character of S. Otherwise, a gap must be bordered on both sides by characters of S. A gap may be as small as a single space. As an example of gaps, consider the alignment in Figure 11.5, which has four gaps containing a total of seven spaces. That alignment would be described as having five matches, one mismatch, four gaps, and seven spaces. Notice that the last space in the first string is followed by a space in the second string, but those two spaces are in two gaps and do not form a single gap.

By including a term in the objective function that reflects the gaps in the alignment one has some influence on the *distribution* of spaces in an alignment and hence on the overall shape of the alignment. In the simplest objective function that includes gaps,

3 Sometimes in the biology literature the term "space" (as we use it) is not used. Rather, the term "gap" is used both for "space" and for "gap" (as we have defined it here). This can cause much confusion, and in this book the terms "gap" and "space" have distinct meanings.
each gap contributes a constant weight \(W_g \), independent of how long the gap is. That is, each individual space is free, so that \(s(x, -) = s(-, x) = 0 \) for every character \(x \). Using the notation established in Section 11.6, (page 226), we write the value of an alignment containing \(k \) gaps as

\[
\sum_{i=1}^{k} s(S_i(t), S_i(i)) - kW_g.
\]

Changing the value of \(W_g \) relative to the other weights in the objective function can change how spaces are distributed in the optimal alignment. A large \(W_g \) encourages the alignment to have few gaps, and the aligned portions of the two strings will fall into a few substrings. A smaller \(W_g \) allows more fragmented alignments. The influence of \(W_g \) on the alignment will be discussed more deeply in Section 13.1.

11.8.2. Why gaps?

Most of the biological justifications given for the importance of local alignment (see Section 11.7) apply as well to justify the gap as an explicit concept in string alignment.

Just as a space in an alignment corresponds to an insertion or deletion of a single character in the edit transcript, a gap in string \(S_i \) opposite substring \(\alpha \) in string \(S_j \) corresponds to either a deletion of \(\alpha \) from \(S_i \) or to an insertion of \(\alpha \) into \(S_j \). The concept of a gap in an alignment is therefore important in many biological applications because the insertion or deletion of an entire substring (particularly in DNA) often occurs as single mutational event. Moreover, many of these single mutational events can create gaps of quite varying sizes with almost equal likelihood (within a wide, but bounded, range of sizes). Much of the repetitive DNA discussed in Section 7.11.1 is caused by single mutational events that copy and insert long pieces of DNA. Other mutational mechanisms that make long insertions or deletions in DNA include: unequal crossing-over in meiosis (causing an insertion in one string and a reciprocal deletion in the other); DNA slippage during replication (where a portion of the DNA is repeated on the replicated copy because the replication machinery loses its place on the template, slipping backwards and repeating a section); insertion of transposable elements (jumping genes) into a DNA string; insertions of DNA by retroviruses; and translocations of DNA between chromosomes [301, 317]. See Figure 11.6 for an example of gaps in genomic sequence data.

When computing alignments for the purpose of deducing evolutionary history over a long period of time, it is often the gaps that are the most informative part of the alignments. In DNA strings, single character substitutions due to point mutations occur continuously and usually at a much faster rate than (nonfatal) mutational events causing gaps. The analogous gene (specifying the "same" protein) in two species can thus be very different at the DNA sequence level, making it difficult to sort out evolutionary relationships on the basis of string similarity (without gaps). But large insertions and deletions in molecules that show up as gaps in alignments occur less frequently than substitutions. Therefore, common gaps in pairs of aligned strings can sometimes be the key features used to deduce the overall evolutionary history of a set of strings [45, 405]. Later, in Section 17.3.2, we will see that such gaps can be considered as evolutionary characters in certain approaches to building evolutionary trees.

At the protein level, recall that many proteins are "built of different combinations of protein domains that have been selected from a relatively small repertoire"[101]. Hence two protein strings might be relatively similar over several intervals but differ in intervals where one contains a protein domain that the other does not. Such an interval most naturally shows up as a gap when two proteins are aligned. In some contexts, many biologists consider the proper identification of the major (long) gaps as the essential problem of protein alignment. If the long (major) gaps have been selected correctly, the rest of the alignment — reflecting point mutations — is then relatively easy to obtain.

An alignment of two strings is intended to reflect the cost (or likelihood) of mutational events needed to transform one string to another. Since a gap of more than one space can be created by a single mutational event, the alignment model should reflect the true distribution of spaces into gaps, not merely the number of spaces in the alignment. It follows that the model must specify how to weight gaps so as to reflect their biological meaning. In this chapter we will discuss different proposed schemes for weighting gaps, and in later chapters we will discuss additional issues in scoring gaps. First we consider a concrete example illustrating the utility of the gap concept.

11.8.3. cDNA matching: a concrete illustration

One concrete illustration of the use of gaps in the alignment model comes from the problem of cDNA matching. In this problem, one string is much longer than the other, and the alignment best reflecting their relationship should consist of a few regions of very high similarity interspersed with "long" gaps in the shorter string (see Figure 11.7). Note that the matching regions can have mismatches and spaces, but these should be a small percentage of the region.
Biological setting of the problem

In eukaryotes, a gene that codes for a protein is typically made up of alternating exons (expressed sequences), which contribute to the code for the protein, and introns (intervening sequences), which do not. The number of exons (and hence also introns) is generally modest (four to twenty say), but the lengths of the introns can be huge compared to the lengths of the exons.

At a very coarse level, the protein specified by a eukaryotic gene is made in the following steps. First, an RNA molecule is transcribed from the DNA of the gene. That RNA transcript is a complement of the DNA in the gene in that each A in the gene is replaced by U (uracil) in the RNA, each T is replaced by A, each C by G, and each G by C. Moreover, the RNA transcript covers the entire gene, introns as well as exons. Then, in a process that is not completely understood, each intron-exon boundary in the transcript is located, the RNA corresponding to the introns is spliced out (or snipped out by a molecular complex called a snip [420]), and the RNA regions corresponding to exons are concatenated. Additional processing occurs that we will not describe. The resulting RNA molecule is called the messenger RNA (mRNA); it leaves the cell nucleus and is used to create the protein it encodes.

Each cell (usually) contains a copy of all the chromosomes and hence all of the genes of the entire individual, yet in each specialized cell (a liver cell for example) only a small fraction of the genes are expressed. That is, only a small fraction of the proteins encoded in the genome are actually produced in that specialized cell. A standard method to determine which proteins are expressed in the specialized cell line, and to hunt for the location of the encoding genes, involves capturing the mRNA in that cell after it leaves the cell nucleus. That mRNA is then used to create a DNA string complementary to it. This string is called cDNA (complementary DNA). Compared to the original gene, the cDNA string consists only of the concatenation of exons in the gene.

It is routine to capture mRNA and make cDNA libraries (complete collections of a cell’s mRNA) for specific cell lines of interest. As more libraries are built up, one collects a reflection of all the genes in the genome and a taxonomy of the cells that the genes are expressed in. In fact, a major component of the Human Genome Project [111], [399] is to obtain cDNAs reflecting most of the genes in the human genome. This effort is also being conducted by several private companies and has led to some interesting disputes over patenting cDNA sequences.

After cDNA is obtained, the problem is to determine where the gene associated with that cDNA resides. Presently, this problem is most often addressed with laboratory methods. However, if the cDNA is sequenced or partially sequenced (and in the Human Genome Project, for example), the intent is to sequence parts of each of the obtained cDNAs, and if one has sequenced the part of the genome containing the gene associated with that cDNA (as, for example, one would have after sequencing the entire genome), then the problem of finding the gene site given a cDNA sequence becomes a string problem. It becomes one of aligning the cDNA string against the longer string of sequenced DNA in a way that reveals the exons. It becomes the cDNA matching problem discussed above.

Why gaps are needed in the objective function

If the objective function includes terms only for matches, mismatches, and spaces, there seems no way to encourage the optimal alignment to be of the desired form. It’s worth a moment’s effort to explain why.

Certainly, you don’t want to set a large penalty for spaces, since that would align all the cDNA string close together, rather than allowing gaps in the alignment corresponding to the long introns. You would also want a much higher penalty for mismatches. Although there may be a few sequencing errors in the data, so that some mismatches will occur even when the cDNA is properly cut up to match the exons, there should not be a large percentage of mismatches. In summary, you want small penalties for spaces, relatively large penalties for mismatches, and positive values for matches.

What kind of alignment would likely result using an objective function that has low space penalty, high mismatch penalty, positive match value of course, and no term for gaps? Remember that the long string contains more than one gene, that the exons are separated by long introns, and that DNA has an alphabet of only four letters present in roughly equal amounts. Under these conditions, the optimal alignment would probably be the longest common subsequence between the short cDNA string and the long anonymous DNA string. And because the introns are long and DNA has only four characters, that common subsequence would likely match all of the characters in the cDNA. Moreover, because of small but real sequencing errors, the true alignment of the cDNA to its exons would not match all the characters. Hence the longest common subsequence would likely have a higher score than the correct alignment of the cDNA to exons. But the longest common subsequence would fragment the cDNA string over the longer DNA and not give an alignment of the desired form — it would not pick out its exons.

Putting a term for gaps in the objective function rectifies the problem. By adding a constant gap weight W_g for each gap in the alignment, and setting W_g appropriately (by experimenting with different values of W_g), the optimal alignment can be induced to cut up the cDNA to match its exons in the longer string. As before, the space penalty is set to zero, the match value is positive, and the mismatch penalty is set high.

Processed pseudogenes

A more difficult version of cDNA matching arises in searching anonymous DNA for processed pseudogenes. A pseudogene is a near copy of a working gene that has mutated sufficiently from the original copy so that it can no longer function. Pseudogenes are very common in eukaryotic organisms and may play an important evolutionary role, providing a ready pool of diverse “near genes.” Following the view that new genes are created by the process of duplication with modification of existing genes [127, 128, 130], pseudogenes either represent trial genes that failed or future genes that will function after additional mutations.

A pseudogene may be located very far from the gene it corresponds to, even on a different chromosome entirely, but it will usually contain both the introns and the exons derived from its working relative. The problem of finding pseudogenes in anonymous sequenced DNA is therefore related to that of finding repeated substrings in a very long string.

A more interesting type of pseudogene, the processed pseudogene, contains only the exon substrings from its originating gene. Like cDNA, the introns have been removed and the exons concatenated. It is thought that a processed pseudogene originates as an mRNA that is transcribed back into DNA (by the enzyme Reverse Transcribease) and inserted into the genome at a random location.

Now, given a long string of anonymous DNA that might contain both a processed pseudogene and its working ancestor, how could the processed pseudogenes be located?

5 This really works, and it is a very instructive exercise to try it out empirically.
The problem is similar to cDNA matching but more difficult because one does not have the cDNA in hand. We leave it to the reader to explore the use of repeat finding methods, local alignment, and gap weight selection in tackling this problem.

Caveat

The problems of cDNA and pseudogene matching illustrate the utility of including gaps in the alignment objective function and the importance of weighting the gaps appropriately. It should be noted, however, that in practice one can approach these matching problems by a judicious use of local alignment without gaps. The idea is that in computing local alignment, one can find not only the most similar pair of substrings but many other highly similar pairs of substrings (see Sections 13.2.4, and 11.7.3). In the context of cDNA or pseudogene matching, these pairs will likely be the exons, and so the needed match of cDNA to exons can be pieced together from a number of nonoverlapping local alignments. This is the more typical approach in practice.

11.8.4. Choices for gap weights

As illustrated by the example of cDNA matching, the appropriate use of gaps in the objective function aids in the discovery of alignments that satisfy an expected shape. But clearly, the way gaps are weighted critically influences the effectiveness of the gap concept. We will examine in detail four general types of gap weights: constant, affine, convex, and arbitrary.

The simplest choice is the constant gap weight introduced earlier, where each individual space is free, and each gap is given a weight of W_g independent of the number of spaces in the gap. Letting w_m and w_{nm} denote weights for matches and mismatches, respectively, the operator-weight version of the problem is:

Find an alignment A to maximize $[W_m(#\text{matches}) - W_{nm} (#\text{mismatches}) - W_g (#\text{gaps})]$

More generally, if we adopt the alphabet-dependent weights for matches and mismatches, the objective in the constant gap weight model is:

Find an alignment A to maximize $[\sum_{i=1}^{n} [s(S_i(j), S'_i(i))] - W_g (#\text{gaps})]$

where $s(x, y) = s(\varepsilon, x) = 0$ for every character x and S_i and S'_i represent the strings S_i and S'_i after insertion of spaces.

A generalization of the constant gap weight model is to add a weight W_s for each space in the gap. In this case, W_s is called the gap initiation weight because it can represent the cost of starting a gap, and W_e is called the gap extension weight because it can represent the cost of extending the gap by one space. Then the operator-weight version of the problem is:

Find an alignment to maximize $[W_m(#\text{matches}) - W_{nm} (#\text{mismatches}) - W_s (#\text{spaces}) - W_e (#\text{gaps})]$

This is called the affine gap weight model because the weight contributed by a single gap of length q is given by the affine function $W_s + q W_e$. The constant gap weight model is simply the affine model with $W_s = 0$.

The alphabet-weight version of the affine gap weight model again sets $s(x, y) = s(\varepsilon, x) = 0$ and has the objective of finding an alignment to maximize $[\sum_{i=1}^{n} [s(S_i(j), S'_i(i))] - W_g (#\text{gaps}) - W_s (#\text{spaces})]$

The affine gap weight model is probably the most commonly used gap model in the molecular biology literature, although there is considerable disagreement about what W_s and W_e should be [161] (in addition to questions about W_m and W_{nm}). For aligning amino acid strings, the widely used search program FASTA [359] has chosen the default settings of $W_m = 10$ and $W_s = 2$. We will return to the question of the choice of these settings in Section 13.1.

It has been suggested [57, 183, 466] that some biological phenomena are better modeled by a gap weight function where each additional space in a gap contributes less to the gap weight than the preceding space (a function with negative second derivative). In other words, a gap weight that is a convex, but not affine, function of its length. An example is the function $W_g + q \log(q)$, where q is the length of the gap. Some biologists have suggested that a gap function that initially increases to a maximum value and then decreases to near zero would reflect a combination of different biological phenomena that insert or delete DNA.

Finally, the most general gap weight we will consider is the arbitrary gap weight, where the weight of a gap is an arbitrary function $u(q)$ of its length q. The constant, affine, and convex weight models are of course subcases of the arbitrary weight model.

Time bounds for gap choices

As might be expected, the time needed to optimally solve the alignment problem with arbitrary gap weights is greater than for the other models. In the case that $u(q)$ is a totally arbitrary function of gap length, the optimal alignment can be found in $O(n m^2 + n^m)$ time, where n and $m \geq n$ are the lengths of the two strings. In the case that $u(q)$ is convex, we will show that the time can be reduced to $O(n m \log m)$ (a further reduction is possible, but the algorithm is much too complex for our interests). In the affine (and hence constant) case the time bound is $O(n m)$, which is the same time bound established for the alignment model without the concept of gaps. In the next sections we will first discuss alignment for arbitrary gap weights and then show how to reduce the running time for the case of affine weight functions. The $O(n m \log m)$-time algorithm for convex weights is more complex than the others and is deferred until Chapter 13.

11.8.5. Arbitrary gap weights

This case was first introduced and solved in the classic paper of Needleman and Wunsch [347], although with somewhat different detail and terminology than used here.

For arbitrary gap weights, we will develop recurrences that are similar to (but more detailed than) the ones used in Section 11.6.1 for optimal alignment without gaps. There is, however, a subtle question about whether these recurrences correctly model the biologist's view of gaps. We will examine that issue in Exercise 45.

To align strings S_i and S'_i, consider, as usual, the prefixes $S_i[1..j]$ of S_i and $S'_i[1..j]$ of S'_i. Any alignment of those two prefixes is one of the following three types (see Figure 11.8):

\footnote{Some call this an affine gap.}
where $G(0, 0) = 0$, but $G(i, j)$ is undefined when exactly one of i or j is zero. Note that $V(0, 0) = w(0)$, which will most naturally be assigned to be zero.

When end spaces, and hence end gaps, are free, then the optimal alignment value is the maximum value over any cell in row n or column m, and the base cases are

$$V(i, 0) = 0,$$
$$V(0, j) = 0.$$

Time analysis

Theorem 11.8.1. Assuming that $|S_1| = n$ and $|S_2| = m$, the recurrences can be evaluated in $O(n m^2 + n^2 m)$ time.

Proof. We evaluate the recurrences by the usual approach of filling in an $(n + 1) \times (m + 1)$ size table one row at a time, where each row is filled from left to right. For any cell (i, j), the algorithm examines one other cell to evaluate $G(i, j)$, j cells of row i to evaluate $E(i, j)$, and i cells of column j to evaluate $F(i, j)$. Therefore, for any fixed row, $m(m + 1)/2 = \Theta(m^2)$ cells are examined to evaluate all the E values in that row, and for any fixed column, $\Theta(n^2)$ cells are examined to evaluate all the F values of that column. The theorem then follows since there are n rows and m columns.

The increase in running time over the previous case ($O(n m^2)$ time when gaps are not in the model) is caused by the need to look j cells to the left and i cells above to determine $V(i, j)$. Before gaps were included in the model, $V(i, j)$ depended only on the three cells adjacent to (i, j), and so each $V(i, j)$ value was computed in constant time. We will show next how to reduce the number of cell examinations for the case of affine gap weights; later we will show a more complex reduction for the case of convex gap weights.

11.8.6. Affine (and constant) gap weights

Here we examine in detail the simplest affine gap weight model and show that optimal alignments in that model can be computed in $O(n m)$ time. That bound is the same as for the alignment model without a gap term in the objective function. So although an explicit gap term in the objective function makes the alignment model much richer, it does not increase the running time used (in an asymptotic, worst-case sense) to find an optimal alignment. This important result was derived by several different authors (e.g., [18], [166], [186]). The same result then holds immediately for constant gap weights.

Recall that the objective is to find an alignment to

$$\text{maximize} \left[W_{\text{m}}(\# \text{matches}) - W_{\text{m}}(\# \text{mismatches}) - W_{\text{g}}(\# \text{gaps}) - W_{\text{s}}(\# \text{spaces}) \right].$$

We will use the same variables $V(i, j)$, $E(i, j)$, $F(i, j)$, and $G(i, j)$ used in the recurrences for arbitrary gap weights. The definition and meanings of these variables remain unchanged, but the recurrence relations will be modified for the case of affine gap weights.

The key insight leading to greater efficiency in the affine gap case is that the increase in the total weight of a gap contributed by each additional space is a constant W_s independent of the size of the gap to that point. In other words, in the affine gap weight model $w(q + 1) - w(q) = W_s$ for any gap length q greater than zero. This is in contrast to the arbitrary weight case where there is no predictable relationship between $w(q)$ and $w(q + 1)$. Because the gap weight increases by the same W_s for each space after the first one, when evaluating $E(i, j)$ or $F(i, j)$ we need not be concerned with exactly where a gap begins, but only whether it
has already begun or whether a new gap is being started (either opposite character \(i\) of \(S_1\) or opposite character \(j\) of \(S_2\)). This insight, as usual, is formalized in a set of recurrences.

The recurrences

For the case where end gaps are included in the alignment value, the base case is easily seen to be

\[
V(i, 0) = E(i, 0) = -W_g - iW_r, \\
V(0, j) = F(0, j) = -W_g - jW_r,
\]

so that the zero row and columns of the table for \(V\) can be filled in easily. When end gaps are free, then \(V(i, 0) = V(0, j) = 0\).

The general recurrences are:

\[
V(i, j) = \max\{E(i, j), F(i, j), G(i, j)\}, \\
G(i, j) = \begin{cases}
V(i - 1, j - 1) + W_m, & \text{if } S_1(i) = S_2(j) \\
V(i - 1, j - 1) - W_m, & \text{if } S_1(i) \neq S_2(j),
\end{cases} \\
E(i, j) = \max\{E(i, j - 1), V(i, j - 1) - W_g\} - W_r, \\
F(i, j) = \max\{F(i, j - 1), V(i - 1, j) - W_g\} - W_r.
\]

To better understand these recurrences, consider the recurrence for \(E(i, j)\). By definition, \(S_1(i)\) will be aligned to the left of \(S_2(j)\). The recurrence says that either 1. \(S_1(i)\) is exactly one space to the left of \(S_2(j)\), in which case any gap begins in \(S_1\) opposite character \(S_2(j)\), and \(E(i, j) = V(i - 1, j - 1) - W_g\); or 2. \(S_1(i)\) is not the left of \(S_2(j)\), in which case the same gap in \(S_1\) is opposite both \(S_2(j - 1)\) and \(S_2(j)\), and \(E(i, j) = V(i, j - 1) - W_g\). An explanation for \(F(i, j)\) is similar, and \(G(i, j)\) is the simple case of aligning \(S_1(i)\) opposite \(S_2(j)\).

As before, the value of the optimal alignment is found in cell \((n, m)\) if right end spaces contribute to the objective function. Otherwise the value of the optimal alignment is the maximum value in the \(n\)th row or \(m\)th column.

The reader should be able to verify that these recurrences are correct but might wonder why \(V(i, j - 1)\) and not \(G(i, j - 1)\) is used in the recurrence for \(E(i, j)\). That is, why is \(E(i, j) = \max\{E(i, j - 1), G(i, j - 1) - W_g\} - W_r\)? This recurrence would be incorrect because it would not consider alignments that have a gap in \(S_1\) bordered on the left by character \(j - 1\) of \(S_1\) and ending opposite character \(i\) of \(S_1\), followed immediately by a gap in \(S_1\). This expanded recurrence \(E(i, j) = \max\{E(i, j - 1), G(i, j - 1) - W_g, V(i, j - 1) - W_g\} - W_r\) would allow for all alignments and would be correct, but the inclusion of the middle term \((G(i, j - 1) - W_g)\) is redundant because the last term \((V(i, j - 1) - W_g)\) includes it.

Time analysis

Theorem 11.8.2. The optimal alignment with affine gap weights can be computed in \(O(nm)\) time, the same time as for optimal alignment without a gap term.

Proof. Examination of the recurrences shows that for any pair \((i, j)\), each of the terms \(V(i, j), E(i, j), F(i, j), G(i, j)\) is evaluated by a constant number of references to previously computed values, arithmetic operations, and comparisons. Hence \(O(nm)\) time suffices to fill in all the \((n + 1) \times (m + 1)\) cells in the dynamic programming table.

11.9. Exercises

1. Write down the edit transcript for the alignment example on page 226.

2. The definition given in this book for string transformation and edit distance allows at most one operation per position in each string. But part of the motivation for string transformation and edit distance comes from an attempt to model evolution, where there is no restriction on the number of mutations that could occur at the same position. A deletion followed by an insertion and then a replacement could all happen at the same position. However, even though multiple operations at the same position are allowed, they will not occur in the transformation that uses the fewest number of operations. Prove this.

3. In the discussion of edit distance, all transforming operations were assumed to be done to one string only, and a "hand-waving" argument was given to show that no greater generality is gained by allowing operations on both strings. Explain in detail why this is no loss in generality in restricting operations to one string only.

4. Give the details for how the dynamic programming table for edit distance or alignment can be filled in columnwise or by successive antidiagnostics. The antidiagonal case is useful in the context of practical parallel computation. Explain this.

5. In Section 11.3.3, we described how to create an edit transcript from the traceback path through the dynamic programming table for edit distance. Prove that the edit transcript created in this way is an optimal edit transcript.

6. In Part I we discussed the exact matching problem when don't-care symbols are allowed. Formulate the edit distance problem when don't-care symbols are allowed in both strings, and show how to handle them in the dynamic programming solution.

7. Prove Theorem 11.3.4 showing that the pointers in the dynamic programming table completely capture all the optimal alignments.

8. Show how to use the optimal (global) alignment value to compute the edit distance of two strings and vice versa. Discuss in general the formal relationship between edit distance and string similarity. Under what circumstances are these concepts essentially equivalent, and when are they different?

9. The method discussed in this chapter to construct an optimal alignment left back-pointers while filling in the dynamic programming (DP) table, and then used those pointers to trace back a path from cell \((n, m)\) to cell \((0, 0)\). However, there is an alternate approach that works even if no pointers are available. If given the full DP table without pointers, one can construct an alignment with an algorithm that "works through" the table in a single pass from cell \((n, m)\) to cell \((0, 0)\). Make this precise and show it can be done as fast as the algorithm that fills in the table.

10. For most kinds of alignments (for example, global alignment without arbitrary gap weights), the traceback using pointers (as detailed in Section 11.3.3) runs in \(O(nm)\) time, which is less than the time needed to fill in the table. Determine which kinds of alignments allow this speedup.

11. Since the traceback paths in a dynamic programming table correspond one-to-one with the optimal alignments, the number of distinct cooptimal alignments can be obtained by computing the number of distinct traceback paths. Give an algorithm to compute this number in \(O(nm)\) time.

Hint: Use dynamic programming.

12. As discussed in the previous problem, the cooptimal alignments can be found by enumerating all the traceback paths in the dynamic programming table. Give a backtracking method to find each path, and each cooptimal alignment, in \(O(nm)\) time per path.

13. In a dynamic programming table for edit distance, must the entries along a row be
nondecreasing? What about down a column or down a diagonal of the table? Now discuss the same questions for optimal global alignment.

14. Give a complete argument that the formula in Theorem 11.6.1 is correct. Then provide the details for how to find the longest common subsequence, not just its length, using the algorithm for weighted edit distance.

15. As shown in the text, the longest common subsequence problem can be solved as an optimal alignment or similarity problem. It can also be solved as an operation-weighted edit distance problem.

Let \(u \) represent the length of the longest common subsequence of two strings of lengths \(n \) and \(m \). Using the operation weights of \(a = 1 \), \(r = 2 \), and \(e = 0 \), we claim that \(D(n, m) = m + n - 2u \) or \(u = (m + n - D(n, m))/2 \). So, \(D(n, m) \) is minimized by maximizing \(u \). Prove this claim and explain in detail how to find a longest common subsequence using a program for operation-weighted edit distance.

16. Write recurrences for the longest common subsequence problem that do not use weights. That is, solve the LCS problem more directly, rather than expressing it as a special case of similarity or operation-weighted edit distance.

17. Explain the correctness of the recurrences for similarity given in Section 11.6.1.

18. Explain how to compute edit distance (as opposed to similarity) when end spaces are free.

19. Prove the one-to-one correspondence between shortest paths in the edit graph and minimum weight global alignments.

20. Show in detail that the end-space free variant of the similarity problem is correctly solved using the method suggested in Section 11.6.4.

21. Prove Theorem 11.6.2, and show in detail the correctness of the method presented for finding the shortest approximate occurrence of \(P \) in \(T \) ending at position \(j \).

22. Explain how to use the dynamic programming table and traceback to find all the optimal solutions (pairs of substrings) to the local alignment problem for two strings \(S \) and \(T \).

23. In Section 11.7.3, we mentioned that the dynamic programming table is often used to identify pairs of substrings of high similarity, which may not be optimal solutions to the local alignment problem. Given similarity threshold \(t \), that method seeks to find pairs of substrings with similarity value \(t \) or greater. Give an example showing that the method might miss some qualifying pairs of substrings.

24. Show how to solve the alphabet-weight alignment problem with affine gap weights in \(O(nm) \) time.

25. The discussions for alignment with gap weights focused on how to compute the values in the dynamic programming table and did not detail how to construct an optimal alignment. Try to limit the amount of additional space required.

26. Explain in detail why the recurrence \(E(i, j) = max \{ E(i, j - 1), G(i, j - 1) - W_{G(i, j - 1)} \} \) is correct for the affine gap model, but is redundant, and that the middle term \((G(i, j - 1) - W_{G(i, j - 1)}) \) can be removed.

27. The recurrences for the affine gap model follow the logic of paying \(W_G + W_U \) when a gap is "initiated" and then paying \(W_U \) for each additional space used in that gap. An alternative logic is to pay \(W_G + W_U \) at the point when the gap is "completed." Write recurrences for the affine gap model that follow that logic. The recurrences should compute the alignment in \(O(nm) \) time. Recurrences of this type are developed in [186].

28. In the end-gap free version of alignment, spaces and gaps at either end of the alignment do not contribute to the cost of the alignment. Show how to use the affine gap recurrences developed in the text to solve the end-gap free version of the affine gap model of alignment. Then consider using the alternate recurrences developed in the previous exercise. Both should run in \(O(nm) \) time. Is there any advantage to using one over the other of these recurrences?

29. Show how to extend the agrep method of Section 4.2.3 to allow character insertions and deletions.

30. Give a simple algorithm to solve the local alignment problem in \(O(nm) \) time if no spaces are allowed in the local alignment.

31. Repeated substrings. Local alignment between two different strings finds pairs of substrings from the two strings that have high similarity. It is also important to find substrings of a single string that have high similarity. Those substrings represent inexact repeated substrings. This suggests that to find inexact repeats in a single string one should locally align a string against itself. But there is a problem with this approach. If we do local alignment of a string against itself, the best substring will be the entire string. Even using all the values in the table, the best path to a cell \((i, j) \) for \(i \neq j \) may be strongly influenced by the main diagonal. There is a simple fix to this problem. Find it. Can your method produce two substrings that overlap? Is that desirable? Later in Exercise 17 of Chapter 13, we will examine the problem of finding the most similar nonoverlapping substrings in a single string.

32. Tandem repeats. Let \(P \) be a pattern of length \(n \) and \(T \) a text of length \(m \). Let \(P^m \) be the concatenation of \(P \) with itself \(m \) times, so \(P^n \) has length \(mn \). We want to compute a local alignment between \(P^n \) and \(T \). That will find an interval in \(T \) that has the best global alignment (according to standard alignment criteria) with some tandem repeat of \(P \). This problem differs from the problem considered in Exercise 4 of Chapter 1, because errors (mismatches and insertions and deletions) are now allowed. The particular problem arises in studying the secondary structure of proteins that form what is called a coiled-coil [188]. In that context, \(P \) represents a motif or domain (a pattern for our purposes) that can repeat in the protein an unknown number of times, and \(T \) represents the protein. Local alignment between \(P^n \) and \(T \) picks out an interval of \(T \) that "optimally" consists of tandem repeats of the motif (with errors allowed). If \(P^n \) is explicitly created, then standard local alignment will solve the problem in \(O(nm^2) \) time. But because \(P^n \) consists of identical copies of \(P \), an \(O(nm) \) time solution is possible. The method essentially simulates what the dynamic programming algorithm for local alignment would do if it were executed with \(P^n \) and \(T \) explicitly. Below we outline the method.

The dynamic programming algorithm will fill in an \(m + 1 \) by \(n + 1 \) table \(V \), whose rows are numbered 0 to \(n \), and whose columns are numbered 0 to \(m \). Row 0 and column 0 are initialized to all 0 entries. Then in each row \(i \), from 1 to \(m \), the algorithm does the following: It executes the standard local alignment recurrences in row \(i \); it sets \(V(i, 0) \) to \(V(i, n) \); and then it executes the standard local alignment recurrences in row \(i \) again. After completely filling in each row, the algorithm selects the cell with largest \(V \) value, as in the standard solution to the local alignment problem.

Clearly, this algorithm only takes \(O(nm) \) time. Prove that it correctly finds the value of the optimal local alignment between \(P^n \) and \(T \). Then give the details of the traceback to construct the optimal local alignment. Discuss why \(P \) was (conceptually) expanded to \(P^n \) and not a longer or shorter string.

33. a. Given two strings \(S_1 \) and \(S_2 \) (of lengths \(n \) and \(m \)) and a parameter \(\delta \), show how to construct the following matrix in \(O(nm) \) time: \(A(i, j) = 1 \) if and only if there is an alignment of \(S_1 \) and \(S_2 \) in which characters \(S_1(i) \) and \(S_2(j) \) are aligned with each other and the value of the
alignment is within δ of the maximum value alignment of S_1 and S_2. That is, if $V(S_1, S_2)$ is the value of the optimal alignment, then the best alignment that puts $S_1(i)$ opposite $S_2(j)$ should have value at least $V(S_1, S_2) - δ$. This matrix M is used [480] to provide some information, such as common or uncommon features, about the set of suboptimal alignments of S_1 and S_2. Since the biological significance of the optimal alignment is sometimes uncertain, and optimality depends on the choice of (often disputed) weights, it is useful to efficiently produce or study a set of suboptimal (but close) alignments in addition to the optimal one. How can the matrix M be used to produce or study these alignments?

b. Show how to modify matrix M so that $M(i, j) = 1$ if and only if $S_1(i)$ and $S_2(j)$ are aligned in every alignment of S_1 and S_2 that has value at least $V(S_1, S_2) - δ$. How efficiently can this matrix be computed? The motivation for this matrix is essentially the same as for the matrix described in the preceding problem and is used in [443] and [445].

34. Implement the dynamic programming solution for alignment with a gap term in the objective function, and then experiment with the program to find the right weights to solve the cDNA matching problem.

35. The process by which intron-exon boundaries (called splice sites) are found in mRNA is not well understood. The simplest hope -- that splice sites are marked by patterns that always occur there and never occur elsewhere -- is false. However, it is true that certain short patterns very frequently occur at the splice sites of introns. In particular, most introns start with the dinucleotide GT and end with AG. Modify the dynamic programming recurrences used in the cDNA matching problem to enforce this fact. There are additional pattern features that are known about introns. Search a library to find information about those conserved features -- you'll find a lot of interesting things while doing the search.

36. Sequence to structure deduction via alignment

An important application for aligning protein strings is to deduce unknown secondary structure of one protein from known secondary structure of another protein. From that secondary structure, one can try to determine the three-dimensional structure of the protein by model building methods. Before describing the alignment exercise, we need some background on protein structure.

A string of a typical globular protein (a typical enzyme) consists of substrings that form the tightly wrapped core of the protein, interspersed by substrings that form loops on the exterior of the protein. There are essentially three types of secondary structures that appear in globular proteins: α-helices and β-sheets, which make up the core of the protein, and loops on the exterior of the protein. There are also turns, which are smaller than loops. The structure of the core of the protein is highly conserved over time, so that any large insertions or deletions are much more likely to occur in the loops than in the core.

Now suppose one knows the secondary (or three-dimensional) structure of a protein from one species, and one has the sequence of the homologous protein from another species, but not its two- or three-dimensional structure. Let S_1 denote the string for the first protein, and S_2 the second. Determining two- or three-dimensional structure by crystallography or NMR is very complex and expensive. Instead, one would like to use sequence alignment of S_1 and S_2 to identify the α and β structures in S_2. The hope is that with the proper alignment model, scoring matrix, and gap penalties, the substrings of the α and β structures in the two strings will align with each other. Since the locations of the α and β regions are known in S_1, a "successful" alignment will identify the α and β regions in S_2. Now, insertions and deletions in core regions are rare, so an alignment that successfully identifies the α and β regions in S_2 should not have large gaps in the α and β regions in S_2. Similarly, the alignment should not have large gaps in the substrings of S_2 that align to the known α and β regions of S_1.

11.9. Exercises

Usually a scoring matrix is used to score matches and mismatches, and a affine (or linear) gap penalty model is also used. Experiments [51, 447] have shown that the success of this approach is very sensitive to the exact choice of the scoring matrix and penalties. Moreover, it has been suggested that the gap penalty must be made higher in the substrings forming the α and β regions than in the rest of the string (for example, see [51] and [296]). That is, no fixed choice for gap penalty and space penalty (gap initiation and gap extension penalties in the vornacular of computational biology) will work. Or at least, having a higher gap penalty in the secondary regions will more likely result in a better alignment. High gap penalties tend to keep the α and β regions unbroken. However, since insertions and deletions do definitely occur in the loops, gaps in the alignment of regions outside the core should be allowed.

This leads to the following alignment problem: How do you modify the alignment model and penalty structure to achieve the requirements outlined above? And, how do you find the optimal alignment within those new constraints?

Technically, this problem is not very hard. However, the application to deducing secondary structure is very important. Orders of magnitude more protein sequence data are available than are protein structure data. Much of what is "known" about protein structure is actually obtained by deductions from protein sequence data. Consequently, deducing structure from sequence is a central goal.

A multiple alignment version of this structure prediction problem is discussed in the first part of Section 14.10.2.

37. Given two strings S_1 and S_2 and a text T, you want to find whether there is an occurrence of S_1 and S_2 interwoven (without spaces) in T. For example, the strings abac and bca occur interwoven in aababbaccdw. Give an efficient algorithm for this problem. (It may have a relationship to the longest common subsequence problem.)

38. As discussed earlier in the exercises of Chapter 1, bacterial DNA is often organized into circular molecules. This motivates the following problem: Given two linear strings of lengths m and n, there are n circular shifts of the first string and m circular shifts of the second string, and so there are nm pairs of circular shifts. We want to compute the global alignment for each of these nm pairs of strings. Can that be done more efficiently than by solving the alignment problem from scratch for each pair? Consider both worst-case analysis and "typical" running time for "naturally occurring" input.

Examine the same problem for local alignment.

39. The stuttering subsequence problem [328]. Let P and T be strings of n and m characters each. Give an $O(m)$-time algorithm to determine if P occurs as a subsequence of T.

Now let P^* denote the string P where each character is repeated i times. For example, if $P = abc$ then $P^* = aabbccc$. Certainly, for any fixed i, one can test in $O(m)$ time whether P^* occurs as a subsequence of T. Give an algorithm that runs in $O(m \log m)$ time to determine the largest i such that P^* is a subsequence of T. Let $\text{Max}(P, T)$ denote the value of that largest i.

Now we will outline an approach to this problem that reduces the running time from $O(m \log m)$ to $O(m)$. You will fill in the details.

For a string T, let d be the number of distinct characters that occur in T. For string T and character x in T, define $\text{occ}(x)$ to be the positions of the odd occurrences of x in T, that is, the positions of the first, third, fifth, etc. occurrence of x in T. Since there are d distinct characters in T, there are d such odd sets. For example, if $T = 0120002121022220110001$ then $\text{occ}(1)$ is 2, 8, 16. Now define half(T) as the subsequence of T that remains after removing all the characters in positions specified by the d odd sets. For example, half(T)
above is 002120101. Assuming that the number of distinct symbols, \(d \), is fixed ahead of time, give an \(O(m) \)-time algorithm to find \(haf(T) \). Now argue that the length of \(haf(T) \) is at most \(m/2 \). This will be used later in the time analysis.

Now prove that \(|\text{Max}(P, T) - 2\text{Max}(P, haf(T))| \leq 1 \).

This fact is the critical one in the method.

The above facts allow us to find \(\text{Max}(P, T) \) in \(O(m) \) time by a divide-and-conquer recursion. Give the details of the method: Specify the termination conditions of the divide and conquer; prove correctness of the method, set up a recurrence relation to analyze the running time, and solve the recurrence to obtain an \(O(m) \) time bound.

Harder problem: What is a realistic application for the stuttering subsequence problem?

40. As seen in the previous problem, it is easy to determine if a single pattern \(P \) occurs as a subsequence in a text \(T \). This takes \(O(m) \) time. Now consider the problem of determining if any pattern in a set of patterns occurs in a text. If \(n \) is the length of all the patterns in the set, then \(O(nm) \) time is obtained by solving the problem for each pattern separately. Try for a time bound that is significantly better than \(O(nm) \). Recall that the analogous substring set problem can be solved in \(O(n + m) \) time by Aho-Corasik or suffix tree methods.

41. The RNA folding problem. The following is an extremely crude version of a problem that arises in predicting the secondary (planar) structure of transfer RNA molecules. Let \(S \) be a string of \(n \) characters over the RNA alphabet \(a, c, u, g \). We define a pairing as a set of disjoint pairs of characters in \(S \). A pairing is called proper if it only contains \((a, u) \) pairs or \((c, g) \) pairs. This constraint arises because in RNA \(a \) and \(u \) are complementary nucleotides, as are \(c \) and \(g \). If we draw \(S \) as a circular string, we define a nested pairing as a proper pairing where each pair in the pairing is connected by a line inside the circle, and where the lines do not cross each other. (See Figure 11.9). The problem is to find a nested pairing of largest cardinality. Often one has the additional constraint that a character may not be in a pair with either of its two immediate neighbors. Show how to solve this version of the RNA folding problem in \(O(n^2) \) time using dynamic programming.

Now modify the problem by adding weights to the objective function so that the weight of an \(a-u \) pair is different than the weight of a \(c-g \) pair. The goal now is to find a nested pairing of maximum total weight. Give an efficient algorithm for this weighted problem.

42. Transfer RNA (tRNA) molecules have a distinctive planar secondary structure called the cloverleaf structure. In a cloverleaf, the string is divided into alternating stems and loops (see Figure 11.10). Each stem consists of two parallel substrings that have the property that any pair of opposing characters in the stem must be complements (a with u; c with g). Chemically, each complementary stem pair forms a bond that contributes to the overall stability of the molecule. A \(c-g \) bond is stronger than an \(a-u \) bond.

Relate this (very superficial) description of tRNA secondary structure to the weighted nested pairing problem discussed above.

43. The true bonding pattern of complementary bases (in the stems) of tRNA molecules mostly conforms to the noncrossing condition in the definition of a nested pairing. However, there are exceptions, so when the secondary structure of known tRNA molecules is represented by lines through the circle, a few lines may cross. These violations of the noncrossing condition are called pseudoknots.

Consider the problem of finding a maximum cardinality proper pairing where a fixed number of pseudoknots are allowed. Give an efficient algorithm for this problem, where the complexity is a function of the permitted number of crossings.

44. RNA sequence and structure alignment. Because of the nested pairing structure of RNA, it is easy to incorporate some structural considerations when aligning RNA strings. Here we examine alignments of this kind.

Let \(P \) be an RNA pattern string with a known pairing structure, and let \(T \) be a larger RNA text string with a known pairing structure. To represent pairing structure in \(P \), let \(O_P(i) \) be the offset (positive or negative) of the mate of the character at position \(i \), if any. For example, if the character at position 17 is mated to the character at position 46, then \(O_P(17) = 29 \) and \(O_P(46) = -29 \). If the character at position \(i \) has no mate, then \(O_P(i) = 0 \). The structure of \(T \) is similarly represented by an offset vector \(O_T \). Then \(P \) exactly occurs in \(T \) starting at position \(j \) if and only if \(P(i) = T(j + i - 1) \) and \(O_P(i) = O_T(j + i - 1) \), for each position \(i \) in \(P \).

a. Assuming the lengths of \(P \) and \(T \) are \(n \) and \(m \), respectively, give an \(O(n + m) \)-time algorithm to find every place that \(P \) exactly occurs in \(T \).

b. Now consider a more liberal criteria for deciding that \(P \) occurs in \(T \) starting at position \(j \). We again require that \(P(i) = T(j + i - 1) \) for each position \(i \) in \(P \), but now only require that \(O_P(i) = O_T(j + i - 1) \) when \(O_P(i) \) is not zero.
Give an efficient algorithm to find all locations where a pattern occurs in a text under the more liberal definition of occurrence. The naïve, $O(nm)$-time solution of explicitly aligning a pattern to every substring of the text is not efficient. An efficient solution can be obtained using only methods in Part I and II of the book.

c. Discuss when the more liberal definition is reasonable and when it may not be.

45. A gap modeling question

The recurrences given in Section 11.8.5 for the case of arbitrary gap weights raise a subtle question about the proper gap model when the gap penalty w is arbitrary. With these recurrences, any single gap can be considered as two or more gaps that just happen to be adjacent. Suppose, for example, $w(q) = 1$ for $q \leq 5$, and $w(q) = 10^9$ for $q > 5$. Then, a gap of length 10 would have weight 10^9 if considered as a single gap, but would only have weight 2 if considered as two adjacent gaps of length five each. The recurrences from Section 11.8.5 would treat those ten spaces as two adjacent gaps with total weight 2. Is this the proper gap model?

There are two viewpoints on this question. In one view, the goal is to model the most likely set of mutation events transforming one string into another, and the alignment is just an aid in displaying this transformation. The primitive mutational events allowed are the transformation of single characters (mismatches in the alignment) and insertion and deletion of blocks of characters of arbitrary lengths (each of which causes a gap in the alignment). With this view, it is perfectly proper to have two adjacent gaps on the same string. These are not just block insertions or deletions that happen to have occurred next to each other.

If the gap weights correctly model the costs of such block operations, and the cost is a concave increasing function of length as in the above example, then it is much more likely that a long gap will be created by several insertion or deletion events than by a single such event. With this view, one should insist that the dynamic program allow adjacent gaps when they are advantageous.

In the other view, one is just interested in how "similar" two strings are, and there may be no explicit mutational model. Then, a given alignment of two strings is simply one way to demonstrate the similarity of the two strings. In that view, a gap is a maximal set of adjacent spaces and so should not be broken into smaller gaps.

With arbitrary gap weights, the dynamic programming recurrences presented correctly model the first view, but not the second. Also, in the case of convex (and hence affine or constant) gap weights, the given recurrences correctly model both views, since there is no incentive to break up a gap into shorter gaps. However, if gap weights with concave increasing sections are thought proper, then different recurrences are required to correctly model the second view. The recurrences below correctly implement the second view:

$$V(i, j) = \max \{E(i, j), F(i, j), G(i, j)\},$$
$$G(i, j) = V(i - 1, j - 1) + g(S(i), S(j)),$$
$$E(i, j) = \max \{G(i, k) - w(j - k) \ (\text{over } 0 \leq k \leq j - 1)\},$$
$$F(i, j) = \max \{G(i, j) - w(i - j) \ (\text{over } 0 \leq i \leq j - 1)\}.$$

These equations differ from the recurrences of Section 11.8.5 by the change of $V(i, k)$ and $V(i, j)$ to $G(i, k)$ and $G(i, j)$ in the equations for $E(i, j)$ and $F(i, j)$, respectively. The effect is that every gap except the left-most one must be preceded by two aligned characters; hence there cannot be two adjacent gaps in the same string. However, this also prohibits

11.9. Exercises

Two adjacent gaps where each is in a different string. For example, the alignment

\[
\begin{array}{ccccccc}
 x & x & a & b & c & \ldots & y & y \\
 x & \ldots & i & d & e & y & y
\end{array}
\]

would never be found by these modified recurrences.

There seems no modeling justification to prohibit adjacent gaps in opposite strings. In fact, some mutations, such as substring inversions (which are common in DNA), would be best represented in an alignment as adjacent gaps of this type, unless the model of alignment has an explicit notion of inversion (we will consider such a model in Chapter 19). Another example where adjacent spaces would be natural occurs when comparing two mRNA strings that arise from alternative intron splicing. In eukaryotes, genes are often comprised of alternating regions of exons and introns. In the normal mode of transcription, each intron is eventually spliced out, so that the mRNA molecule reflects a concatenation of the exons. But it can also happen, in what is called alternative splicing, that exons can be spliced out as well as introns. Consider then the situation where all the introns plus exon i are spliced out, and the situation where all the introns plus exon $i + 1$ are spliced out. When these two mRNA strings are compared, the best alignment may very well put exon i against a gap in the second string, and then put exon $i + 1$ against a gap in the first string. In other words, the informative alignment would have two adjacent gaps in alternate strings. In that case, the recurrences above do not correctly implement the second viewpoint.

Write recurrences for arbitrary gap weights to allow adjacent gaps in the two opposite strings and yet prohibit adjacent gaps in a single string.
Refining Core String Edits and Alignments

In this chapter we look at a number of important refinements that have been developed for certain core string edit and alignment problems. These refinements either speed up a dynamic programming solution, reduce its space requirements, or extend its utility.

12.1. Computing alignments in only linear space

One of the deficits of dynamic programming for all the problems we have discussed is that the dynamic programming tables use $O(nm)$ space when the input strings have length n and m. (When we talk about the space used by a method, we refer to the maximum space ever in use simultaneously. Reused space does not add to the count of space use.) It is quite common that the limiting resource in string alignment problems is not time but space. That limit makes it difficult to handle large strings, for no matter how long we may be willing to wait for the computation to finish. Therefore, it is very valuable to have methods that reduce the use of space without dramatically increasing the time requirements.

Hirschberg [224] developed an elegant and practical space-reduction method that works for many dynamic programming problems. For several string alignment problems, this method reduces the required space from $O(nm)$ to $O(n)$ (for $n < m$) while only doubling the worst-case time bound. Miller and Myers expanded on the idea and brought it to the attention of the computational biology community [344]. The method has since been extended and applied to many more problems [97]. We illustrate the method using the dynamic programming solution to the problem of computing the optimal weighted global alignment of two strings.

12.1.1. Space reduction for computing similarity

Recall that the similarity of two strings is a number, and that under the similarity objective function there is an optimal alignment whose value equals that number. Now if we only require the similarity $V(n, m)$, and not an actual alignment with that value, then the maximum space needed (in addition to the space for the strings) can be reduced to $2m$.

The idea is that when computing V values for row i, the only values needed from previous rows are from row $i - 1$; any rows before $i - 1$ can be discarded. This observation is clear from the recurrences for similarity. Thus, we can implement the dynamic programming solution using only two rows, one called row C for current, and one called row P for previous. In each iteration, row C is computed using row P, the recurrences, and the two strings. When that row C is completely filled in, the values in row P are no longer needed and C gets copied to P to prepare for the next iteration. After n iterations, row C holds the values for row n of the full table and hence $V(n, m)$ is located in the last cell of that row. In this way, $V(n, m)$ can be computed in $O(m)$ space and $O(nm)$ time. In fact, any single row of the full table can be found and stored in those same time and space bounds. This ability will be critical in the method to come.

As a further refinement of this idea, the space needed can be reduced to one row plus one additional cell (in addition to the space for the strings). Thus, $m + 1$ space is all that is needed. And, if $n < m$ then space use can be further reduced to $n + 1$. We leave the details as an exercise.

12.1.2. How to find the optimal alignment in linear space

The above idea is fine if we only want the similarity $V(n, m)$ or just want to store one preselected row of the dynamic programming table. But what can we do if we actually want an alignment that achieves value $V(n, m)$? In most cases it is such an alignment that is sought, not just its value. In the basic algorithm, the alignment would be found by traversing the pointers set while computing the full dynamic programming table for similarity. However, the above linear space method does not store the whole table and linear space is insufficient to store the pointers.

Hirschberg's high-level scheme for finding the optimal alignment in linear space performs several smaller alignment computations, each using only linear space and each determining a bit more about an actual optimal alignment. The net result of these computations is a full description of an optimal alignment. We first describe how the initial piece of the full alignment is found using only linear space.

Definition For any string a, let a' denote the reverse of string a.

Definition Given strings S_1 and S_2, define $V'(i, j)$ as the similarity of the string consisting of the first i characters of S_1, and the string consisting of the first j characters of S_2. Equivalently, $V'(i, j)$ is the similarity of the last i characters of S_1 and the last j characters of S_2 (see Figure 12.1).

Clearly, the table of $V'(i, j)$ values can be computed in $O(nm)$ time, and any single preselected row of that table can be computed and stored in $O(nm)$ time using only $O(m)$ space.

The initial piece of the full alignment is computed in linear space by computing $V(n, m)$ in two parts. The first part uses the original strings; the second part uses the reverse strings. The details of this two-part computation are suggested in the following lemma.

Lemma 12.1.1. $V(n, m) = \max_{0 \leq k \leq m} [V(n/2, k) + V'(n/2, m - k)]$.
PROOF: This result is almost obvious, and yet it requires a proof. Recall that $S_i[1..i]$ is the prefix of string S_i consisting of the first i characters and that $S_i[1..i]$ is the reverse of the suffix of S_i consisting of the last i characters of S_i. Similar definitions hold for S_2 and S_2.

For any fixed position k' in S_2, there is an alignment of S_i and S_2 consisting of an alignment of $S_i[1..n/2]$ and $S_2[1..k']$ followed by a disjoint alignment of $S_i[n/2 + 1..n]$ and $S_2[k' + 1..m]$. By definition of V and V', the best alignment of the first type has value $V(n/2, k')$ and the best alignment of the second type has value $V'(n/2, m - k')$, so the combined alignment has value $V(n/2, k') + V'(n/2, m - k') \leq \max[V(n/2, k), V'(n/2, m - k)] \leq V(n, m)$.

Conversely, consider an optimal alignment of S_i and S_2. Let k' be the right-most position in S_i that is aligned with a character at or before position $n/2$ in S_i. Then the optimal alignment of S_1 and S_2 consists of an alignment of $S_1[1..n/2]$ and $S_2[1..k']$ followed by an alignment of $S_i[n/2 + 1..n]$ and $S_i[k' + 1..m]$. Let the value of the first alignment be denoted p and the value of the second alignment be denoted q. Then p must be equal to $V(n/2, k')$, for if $p < V(n/2, k')$ we could replace the alignment of $S_i[1..n/2]$ and $S_2[1..k']$ with the alignment of $S_1[1..n/2]$ and $S_2[1..k']$ that has value $V(n/2, k')$. That would create an alignment of S_1 and S_2 whose value is larger than the claimed optimal. Hence $p = V(n/2, k')$. By similar reasoning, $q = V'(n/2, m - k')$. So $V(n, m) = V(n/2, k') + V'(n/2, m - k') \leq \max[V(n/2, k), V'(n/2, m - k)]$.

Having shown both sides of the inequality, we conclude that $V(n, m) = \max[V(n/2, k) + V'(n/2, m - k)]$.

Definition: Let k^* be a position k that maximizes $[V(n/2, k) + V'(n/2, m - k)]$.

By Lemma 12.1.1, there is an optimal alignment whose traceback path in the full dynamic programming table (if one had filled in the full n by m table) goes through cell $(n/2, k^*)$. Another way to say this is that there is an optimal (longest) path L from node $(0, 0)$ to node (n, m) in the alignment graph that goes through node $(n/2, k^*)$. That is the key feature of k^*.

Definition: Let $L_{n/2}$ be the subpath of L that starts with the last node of L in row $n/2 - 1$ and ends with the first node of L in row $n/2 + 1$.

Lemma 12.1.2: A position k^* in row $n/2$ can be found in $O(nm)$ time and $O(m)$ space. Moreover, a subpath $L_{n/2}$ can be found and stored in those time and space bounds.

PROOF: First, execute dynamic programming to compute the optimal alignment of S_1 and S_2, but stop after iteration $n/2$ (i.e., after the values in row $n/2$ have been computed). Moreover, when filling in row $n/2$, establish and save the normal traceback pointers for the cells in that row. At this point, $V(n/2, k)$ is known for every $0 \leq k \leq m$. Following the earlier discussion, only $O(m)$ space is needed to obtain the values and pointers in row $n/2$. Second, begin computing the optimal alignment of S_i and S_2 but stop after iteration $n/2$. Save both the values for cells in row $n/2$ along with the traceback pointers for those cells. Again, $O(m)$ space suffices and value $V(n, m - k)$ is known for every k. Now, for each k, add $V(n/2, k)$ to $V'(n/2, m - k)$, and let k^* be an index k that gives the largest sum. These additions and comparisons take $O(m)$ time.

Using the first set of saved pointers, follow any traceback path from cell $(n/2, k^*)$ to a cell in row $n/2 - 1$. This identifies a subpath that is on an optimal path from cell $(0, 0)$ to cell $(n/2, k^*)$. Similarly, using the second set of traceback pointers, follow any traceback path from cell $(n/2, k^*)$ to a cell in row $n/2 + 1$. That path identifies a subpath of an optimal path from $(n/2, k^*)$ to (n, m). These two subpaths taken together form the subpath $L_{n/2}$ that is part of an optimal path L from $(0, 0)$ to (n, m). Moreover, that optimal path goes through cell $(n/2, k^*)$. Overall, $O(nm)$ time and $O(m)$ space is used to find k^*, k_1, k_2, and $L_{n/2}$.

To analyze the full method to come, we will express the time needed to fill in the dynamic programming table of size p by q as cpq, for some unspecified constant c, rather than as $O(pq)$. In that view, the $n/2$ row of the first dynamic program computation is found in $cnm/2$ time, as is the $n/2$ row of the second computation. Thus, a total of cnm time is needed to obtain and store both rows.

The key point to note is that with a cnm-time and $O(m)$-space computation, the algorithm learns k^*, k_1, k_2, and $L_{n/2}$. This specifies part of an optimal alignment of S_1 and S_2, and not just the value $V(n, m)$. By Lemma 12.1.1 it learns that there is an optimal alignment of S_1 and S_2 consisting of an optimal alignment of the first $n/2$ characters of S_1 with the first k^* characters of S_2, followed by an optimal alignment of the last $n/2$ characters of S_1 with the last $m - k^*$ characters of S_2. In fact, since the algorithm has also learned the subpath (subalignment) $L_{n/2}$, the problem of aligning S_1 and S_2 reduces to two smaller alignment problems, one for the strings $S_1[n/2 - 1..n]$ and $S_2[k_1..m]$, and one for the strings $S_1[n/2 + 1..n]$ and $S_2[k_2..m]$. We call the first of the two problems the top problem and the second the bottom problem. Note that the top problem is an alignment problem on strings of lengths at most $n/2$ and k^*, while the bottom problem is on strings of lengths at most $n/2$ and $m - k^*$.

In terms of the dynamic programming table, the top problem is computed in section A of the original n by m table shown in Figure 12.2, and the bottom problem is computed in section B of the table. The rest of the table can be ignored. Again, we can determine the values in the middle row of A (or B) in time proportional to the total size of A (or B). Hence the middle row of the top problem can be determined at most $ck^*n/2$ time, and the middle row in the bottom problem can be determined in at most $cm(m - k^*)n/2$ time. These two times add to $cnm/2$. This leads to the full idea for computing the optimal alignment of S_1 and S_2.

![Figure 12.2: After finding k^*, the alignment problem reduces to finding an optimal alignment in section A of the table and another optimal alignment in section B of the table. The total area of subtables A and B is at most $cnm/2$. The subpath $L_{n/2}$ through cell $(n/2, k^*)$ is represented by a dashed path.](image-url)
12.1.3. The full idea: use recursion

Having reduced the original n by m alignment problem (for S1 and S2) to two smaller alignment problems (the top and bottom problems) using O(nm) time and O(m) space, we now solve the top and bottom problems by a recursive application of this reduction. (For now, we ignore the space needed to save the subsequences of L.) Applying exactly the same idea as was used to find k∗ in the n by m problem, the algorithm uses O(m) space to find the best column in row n/4 to break up the top n/2 by k1 alignment problem. Then it reuses O(m) space to find the best column to break up the bottom n/2 by m − k2 alignment problem. Stated another way, we have two alignment problems, one on a table of size at most n/2 by k∗ and another on a table of size at most n/2 by m − k∗. We can therefore find the best column in the middle row of each of the two subproblems in at most cnk∗/2 + cm(m − k∗)/2 = cmm/2 time, and recurse from there with four subproblems.

Continuing in this recursive way, we can find an optimal alignment of the two original strings with log n levels of recursion, and at no time do we ever use more than O(m) space. For convenience, assume that n is a power of two so that each successive halving gives a whole number. At each recursive call, we also find and store a subpath of an optimal path L, but these subsequences are edge disjoint, and so their total length is O(n + m). In summary, the recursive algorithm we need is:

Hirschberg's linear-space optimal alignment algorithm

Procedure OPTA(l, l′, r, r′);
begin
 h := (l′ − l)/2;
 In O(l′ − l) = O(m) space, find an index k∗ between l and l′, inclusively, such that there is an optimal alignment of S1[l..l′] and S2[r..r′] consisting of an optimal alignment of S1[l..h] and S2[r..k∗+1] followed by an optimal alignment of S1[h+1..l′] and S2[k∗+1..r′].
 Also find and store the subpath Lh that is part of an optimal (longest) path L′ from cell (l, r) to cell (l′, r′) and that begins with the last cell k1 on L′ in row h − 1 and ends with the first cell k2 on L′ in row h + 1. This is done as described earlier.
 Call OPTA(l, h − 1, r, k1); [new top problem]
 Output subpath Lh;
 Call OPTA(h + 1, l′, k2, r′); [new bottom problem]
end.

The call that begins the computation is to OPTA(1, n, 1, m). Note that the subpath Lh is output between the two OPTA calls and that the top problem is called before the bottom problem. The effect is that the subsequences are output in order of increasing h value, so that their concatenation describes an optimal path L from (0, 0) to (n, m), and hence an optimal alignment of S1 and S2.

12.1.4. Time analysis

We have seen that the first level of recursion uses cnm time and the second level uses at most cmm/2 time. At the ith level of recursion, we have 2i−1 subproblems, each of which has n/2−1 rows but a variable number of columns. However, the columns in these subproblems are distinct so the total size of all the problems is at most the total number of columns, m, times n/2−1. Hence the total time used at the ith level of recursion is at most cnm/2i−1. The final dynamic programming pass to describe the optimal alignment takes cnm time. Therefore, we have the following theorem:

Theorem 12.1.1. Using Hirschberg's procedure OPTA, an optimal alignment of two strings of length n and m can be found in Σi=0∞ cni/2i−1 ≤ 2cnnm time and O(m) space.

For comparison, recall that cnm time is used by the original method of filling in the full n by m dynamic programming table. Hirschberg's method reduces the space use from Θ(nm) to Θ(m) while only doubling the worst-case time needed for the computation.

12.1.5. Extension to local alignment

It is easy to apply Hirschberg's linear-space method for (global) alignment to solve the local alignment problem for strings S1 and S2. Recall that the optimal local alignment of S1 and S2 identifies substrings α and β whose global alignment has maximum value over all pairs of substrings. Hence, if substrings α and β can be found using only linear space, then their actual alignment can be found in linear space, using Hirschberg's method for global alignment.

From Theorem 11.7.1, the value of the optimal local alignment is found in the cell (i∗, j∗) containing the maximum v value. The indices i∗ and j∗ specify the ends of strings α and β whose global alignment has a maximum similarity value. The v values can be computed rowwise, and the algorithm must store values for only two rows at a time. Hence the end positions i∗ and j∗ can be found in linear space. To find the starting positions of the two strings, the algorithm can execute a reverse dynamic program using linear space (we leave this to the reader to detail). Alternatively, the dynamic programming algorithm for v can be extended to set a pointer h(i, j) for each cell (i, j), as follows: If v(i, j) is set to zero, then set the pointer h(i, j) to (i, j); if v(i, j) is set greater than zero, and if the normal traceback pointer would point to cell (p, q), then set h(i, j) to h(p, q). In this way, h(i∗, j∗) specifies the starting positions of substrings α and β, respectively. Since α and β can be found in linear space, the local alignment problem can be solved in O(nm) time and O(m) space. More on this topic can be found in [232] and [97].

12.2. Faster algorithms when the number of differences is bounded

In Sections 9.4 and 9.5 we considered several alignment and matching problems where the number of allowed mismatches was bounded by a parameter k, and we obtained algorithms that run faster than without the imposed bound. One particular problem was the k-mismatch problem, finding all places in a text T where a pattern P occurs with at most k mismatches.

A direct dynamic programming solution to this problem runs in O(nm) time for a pattern of length n and a text of length m. But in Section 9.4 we developed an O(km) time solution based on the use of a suffix tree, without any need for dynamic programming.

The O(km)-time result for the k-mismatch problem is useful because many applications seek only exact or nearly exact occurrences of P in T. Motivated by the same kinds of applications (and additional ones to be discussed in Section 12.2.1), we now extend the k-mismatch result to allow both mismatches and spaces (insertions and deletions from the viewpoint of edit distance). We use the term "differences" to refer to both mismatches and spaces.
Two specific bounded difference problems

We study two specific problems: the k-difference global alignment problem and the more involved k-difference inexact matching problem. This material was developed originally in the papers of Ukkonen [439], Fickett [155], Myers [341], and Landau and Vishkin [289]. The latter paper was expanded and illustrated with biological applications by Landau, Vishkin, and Nussinov [290]. There is much additional algorithmic work exploiting the assumption that the number of differences may be small [341, 345, 342, 337, 483, 94, 93, 95, 373, 440, 482, 413, 414, 415]. A related topic, algorithms whose expected running time is fast, is studied in Section 12.3.

Definition Given strings S_1 and S_2 and a fixed number k, the k-difference global alignment problem is to find the best global alignment of S_1 and S_2 containing at most k mismatches and spaces (if one exists).

The k-difference global alignment problem is a special case of edit distance and is useful when S_1 and S_2 are believed to be fairly similar. It also arises as a subproblem in more complex string processing problems, such as the approximate PCR primer problem considered in Section 12.2.5. The solution to the k-difference global alignment problem will also be used to speed up global alignment when no bound k is specified.

Definition Given strings P and T, the k-difference inexact matching problem is to find all ways (if any) to match P in T using at most k character substitutions, insertions, and deletions. That is, find all occurrences of P in T using at most k mismatches and spaces.

(End spaces in T but not P are free.)

The inclusion of spaces, in addition to mismatches, allows a more robust version of the k-mismatch problem discussed in Section 9.4, but it complicates the problem. Unlike our solution to the k-mismatch problem, the k-differences problem seems to require the use of dynamic programming. The approach we take is to speed up the basic $O(nm)$-time dynamic programming solution, making use of the assumption that only alignments with at most k differences are of interest.

12.2.1. Where do bounded difference problems arise?

There is a large (and growing) computer science literature on algorithms whose efficiency is based on assuming a bounded number of differences. (See [93] for a survey and comparison of some of these, along with an additional method.) It is therefore appropriate, before discussing specific algorithmic results, to ask whether bounded difference problems arise frequently enough to justify the extensive research effort.

Bounded difference problems arise naturally in situations where a text is repeatedly modified (edited). Alignment of the text before and after modification can highlight the places where changes were made. A related application [345] concerns updating a graphics screen after incremental changes have been made to the displayed text. The assumption behind incremental screen update is that the text has changed by only a small amount, and that changing the text on the screen is slow enough to be seen by the user. The alignment of the old and new text then specifies the fewest changes to the existing screen needed to display the new text. Graphic displays with random access can exploit this information to very rapidly update the screen. This approach has been taken by a number of text editors.

The effects of the speedup are easily seen and are often quite dramatic.

12.2.2. Illustrations from molecular biology

In biological applications of alignment, it may be less apparent that a bound on the number of allowed (or expected) differences between strings is ever justified. It has been explicitly stated by some computer scientists that bounded difference alignment methods have no relevance in biology. Certainly, the major open problems in aligning and comparing biological sequences arise from strings (usually protein) that have very little overall similarity. There is no argument on that point. Still, there are many sequence problems in molecular biology (particularly problems that come from genomics and handling DNA sequences rather than proteins) where it is appropriate to restrict the number of allowed (or expected) differences. A few hours of skimming biology journals will turn up many such examples.\(^1\)

We have already discussed one application, that of searching for STTs and ESTs in newly sequenced DNA (see Section 7.8.3). We have also mentioned the approximate PCR primer problem, which will be discussed in detail in Section 12.2.5. We mention here a few additional examples of alignment problems in biology where setting a bound on the number of differences is appropriate.

Chang and Lawler [94] point out that present DNA sequence assembly methods (see Sections 16.14 and 16.15.1) solve a massive number of instances of the approximate suffix-prefix matching problem. These methods compute, for every pair of strings S_1, S_2 in a large set of strings, the best match of a suffix of S_1 with a prefix of S_2, where the match is permitted to contain a "modest" percentage of differences. Using standard dynamic programming methods, these suffix-prefix computations have accounted for over 90% of the computation time used in past sequence assembly projects [363]. But in this application, the only suffix-prefix matches of interest are those with a modest number of differences. Accordingly, it is appropriate to use a more general algorithm that explicitly exploits that assumption. A related problem occurs in the "BAC-PAC" sequencing method involving hundreds of thousands of sequence alignments (see Section 16.13.1).

Another example arises in approaches to locating genes whose mutation causes or contributes to certain genetic diseases. The basic idea is to first identify (through genetic linkage analysis, functional analysis, or other means) a gene, or a region containing a gene, that is believed to cause or contribute to the disease of interest. Copies of that gene or region are then obtained and sequenced from people who are affected by the disease and people (usually relatives) who are not. The sequenced DNA from the affected and unaffected individuals is compared to find any consistent differences. Since many genetic diseases are caused by very small changes in a gene (possibly a single base change, deletion, or inversion), the problem involves comparing strings that have a very small number of differences. Systematic investigation of gene polymorphisms (differences) is an active area of research, and there are databases holding all the different sequences that have been found for certain specific genes. These sequences generally will be very similar to one another, so alignment and string manipulation tools that assume a bounded number of differences between strings are useful in handling those sequences.

A similar situation arises in the emerging field of "molecular epidemiology" where one tries to trace the transmission history of a pathogen (usually a virus) whose genome is mutating rapidly. This fine-scale analysis of the changing viral DNA or RNA gives rise to string comparisons between very similar strings. Aligning pairs of these strings to reveal

\(^1\) I recently attended a meeting concerning the Human Genome Project, where numerous examples were presented in talks. I stopped taking notes after the tenth one.
their similarities and differences is a first step in sorting out their history and the constraints on how they can mutate. The history of their mutations is then represented in the form of an evolutionary tree (see Chapter 17). Collections of HIV viruses have been studied in this way. Another good example of molecular epidemiology [348] arises in tracing the history of Hantavirus infections in the southwest United States that appeared during the early 1990s.

The final two examples come from the milestone paper [162] reporting the first complete DNA sequencing of a free-living organism, the bacteria Haemophilus influenzae Rd. The genome of this bacteria consists of 1,830,137 base pairs and its full sequence was determined by pure shotgun sequencing without initial mapping (see Section 16.14). Before the large-scale sequencing project, many small, disparate pieces of the bacterial genome had been sequenced by different groups, and these sequences were in the DNA databases. One of the ways the sequencers checked the quality of their large-scale sequencing was to compare, when possible, their newly obtained sequence to the previously determined sequence. If they could not match the appropriate new sequences to the old ones with only a small number of differences, then additional steps were taken to assure that the new sequences were correct. Quoting from [162], "The results of such a comparison show that our sequence is 99.67 percent identical overall to those GenBank sequences annotated as H. influenzae Rd."

From the standpoint of alignment, the problem discussed above is to determine whether or not the new sequences match the old ones with few differences. This application illustrates both kinds of bounded difference alignment problems introduced earlier. When the location in the genome of the database sequence is known, the corresponding string in the full sequence can be extracted for comparison. The resulting comparison problem is then an instance of the k-difference global alignment problem that will be discussed next, in Section 12.2.3. When the genome location of the database sequence P is not known (and this is common), the comparison problem is to find all the places in the full sequence where P occurs with a very small number of allowed differences. That is then an instance of the k-difference inexact matching problem, which will be considered in Section 12.2.4.

The above story of H. influenzae sequencing will be repeated frequently as systematic large-scale DNA sequencing of various organisms becomes more common. Each full sequence will be checked against the shorter sequences for that organism already in the databases. This will be done not only for quality control of the large-scale sequencing, but also to correct entries in the databases, since it is generally believed that large-scale sequencing is more accurate.

The second application from [162] concerns building a nonredundant database of bacterial proteins (NRBP). For a number of reasons (for example, to speed up the search or to better evaluate the statistical significance of matches that are found), it is helpful to reduce the number of entries in a sequence database (in this case, bacterial protein sequences) by culling out, or combining in some way, highly similar, "redundant" sequences. This was done in the work presented in [162], and a "nonredundant" version of GenBank is regularly compiled at The National Center for Biotechnology Information. Fleischmann et al. [162] write:

Redundancy was removed from NRBP at two stages. All DNA coding sequences were extracted from GenBank . . . and sequences from the same species were searched against each other. Sequences having more than 97 percent identity over regions longer than 100 nucleotides were combined. In addition, the sequences were translated and used in protein comparisons with all sequences in SwissProt . . . Sequences belonging to the same species and having more than 98 percent similarity over 33 amino acids were combined.

A similar example is discussed in [399] where roughly 170,000 DNA sequences "were subjected to an optimal alignment procedure to identify sequence pairs with at least 97% identity". In these alignment problems, one can impose a bound on the number of allowed differences. Alignments that exceed that bound are not of interest – the computation only needs to determine whether two sequences are "sufficiently similar" or not. Moreover, because these applications involve a large number of alignments (all database entries against themselves), efficiency of the method is important.

Admittedly, not every bounded-difference alignment problem in biology requires a sophisticated algorithm. But applications are so common, the sizes of some of the applications are so large, and the speedups so great, that it seems unproductive to completely dismiss the potential utility to molecular biology of bounded-difference and bounded-mismatch methods. With this motivation, we now discuss specific techniques that efficiently solve bounded-difference alignment problems.

12.2.3. k-difference global alignment

The problem is to find the best global alignment subject to the added condition that the alignment contains at most k mismatches and spaces, for a given value k. The goal is to reduce the time bound for the solution from O(nm) (based on standard dynamic programming) to O(km). The basic approach is to compute the edit distance of S1 and S2 using dynamic programming but fill in only an O(km)-size portion of the full table.

The key observation is the following: If we define the main diagonal of the dynamic programming table as the cells (i, i) for i ≤ n ≤ m, then any path in the dynamic programming table that defines a k-difference global alignment must not contain any cell (i, i + l) or (i, i − l) where l is greater than k (see Figure 12.3). To understand this, note that any path specifying a global alignment begins on the main diagonal (in cell (0, 0)) and ends on, or to the right of, the main diagonal (in cell (n, m)). Therefore, the path must introduce one space in the alignment for every horizontal move that the path makes off the main diagonal. Thus, only those paths that are never more than k horizontal cells from the main diagonal are candidates for specifying a k-difference global alignment. (Note
that this implies that \(m - n \leq k \) is a necessary condition for there to be any solution.)

Therefore, to find any \(k \)-difference global alignment, it suffices to fill in the dynamic programming table in a strip consisting of \(2k + 1 \) cells in each row, centered on the main diagonal. When assigning values to cells in that strip, the algorithm follows the established recurrence relations for edit distance except for cells on the upper and lower border of the strip. Any cell on the upper border of the strip ignores the term in the recurrence relation for the cell above it (since it is out of the strip); similarly, any cell on the lower border ignores the term in the recurrence relation for the cell to its left. If \(m = n \), the size of the strip can be reduced by half (Exercise 4).

If there is no global alignment of \(S_1 \) and \(S_2 \) with \(k \) or fewer differences, then the value obtained for cell \((n, m)\) will be greater than \(k \). That value, greater than \(k \), is not necessarily the correct edit distance of \(S_1 \) and \(S_2 \), but it will indicate that the correct value for \((n, m)\) is greater than \(k \). Conversely, if there is a global alignment with \(d \leq k \) differences, then the corresponding path is contained inside the strip and so the value in cell \((n, m)\) will be correctly set to \(d \). The total area of the strip is \(O(\text{kn}) \) which is \(O(\text{km}) \), because \(n \) and \(m \) can differ by at most \(k \). In summary, we have

Theorem 12.2.1. There is a global alignment of \(S_1 \) and \(S_2 \) with at most \(k \) differences if and only if the above algorithm assigns a value of \(k \) or less to cell \((n, m)\). Hence the \(k \)-difference global alignment problem can be solved in \(O(\text{km}) \) and \(O(\text{km}) \) space.

What if \(k \) is not specified?

The solution presented above can be used in somewhat different context. Suppose the edit distance of \(S_1 \) and \(S_2 \) is \(k^* \), but we don’t know \(k^* \) or any bound on it ahead of time. The straightforward dynamic programming solution to compute the edit distance, \(k^* \), takes \(\Theta(\text{nm}) \) time and space. We will reduce those bounds to \(O(\text{km}) \). So when the edit distance is small, the method runs fast and uses little space. When the edit distance is large, the method only uses \(\Theta(\text{nm}) \)-time and space, the same as for the standard dynamic programming solution.

The idea is to successively guess a bound \(k \) on \(k^* \) and use Theorem 12.2.1 to determine if the guessed bound is big enough. In detail, the method starts with \(k = 1 \) and checks if there is a global alignment with at most one difference. If so, then the best global alignment (with zero or one difference) has been found. If not, then the method doubles \(k \) and again checks if there is a \(k \)-difference global alignment. At each successive iteration the method doubles \(k \) and checks whether the current \(k \) is sufficient. The process continues until a global alignment is found or at most \(k \) differences, for the current value of \(k \). When the method stops, the best alignment in the present strip (of width \(k \) on either side of the main diagonal) will have value \(k^* \). The reason is that the alignment paths are divided into two types: those contained entirely in the present strip and those that go out of the strip. The alignment in hand is the best alignment of the first type, and any path that goes out of the strip specifies an alignment with more than \(k \) spaces. It follows that the current value of cell \((n, m)\) must be \(k^* \).

Theorem 12.2.2. By successively doubling \(k \) until there is a \(k \)-difference global alignment, the edit distance \(k^* \) and its associated alignment are computed in \(O(\text{km}) \) time and space.

Proof. Let \(k^* \) be the largest value of \(k \) used in the method. Clearly, \(k^* \approx 2k^* \). So the total work in the method is \(O(k^* + k^*/2 + k^*/4 + \cdots + m) = O(k^*m) = O(k^*m) \).

12.2.4. The return of the suffix tree: \(k \)-difference inexact matching

We now consider the problem of inexact matching a pattern \(P \) to a text \(T \), when the number of differences is required to be at most \(k \). This is an extension of the \(k \)-mismatch problem but is more difficult because it allows spaces in addition to mismatches. The \(k \)-mismatch problem was solved using suffix trees alone, but suffix trees are not well structured to handle insertion and deletion errors. The \(k \)-difference inexact matching problem is also more difficult than the \(k \)-difference global alignment problem because we seek an alignment of \(P \) and \(T \) in which the end spaces occurring in \(T \) are not counted. Therefore, the sizes of \(P \) and \(T \) can be very different, and we cannot restrict attention to paths that stay within \(k \) cells of the main diagonal.

Even so, we will again obtain an \(O(\text{km}) \) time and space method, combining dynamic programming with the ability to solve longest common extension queries in constant time (see Section 9.1). The resulting solution will be the first of several examples of hybrid dynamic programming, where suffix trees are used to solve subproblems within the framework of a dynamic programming computation. The \(O(\text{km}) \)-time result was first obtained by Landau and Vishkin [287] and Myers [341] and extended in a number of papers. Good surveys of many methods for this problem appear in [93] and [421].

Definition As before, the main diagonal of the \(n \) by \(m \) dynamic programming table consists of cells \((i, i)\) for \(0 \leq i \leq n \leq m \). The diagonals above the main diagonal are numbered \(1 \) through \(m \); the diagonal starting in cell \((0, i)\) is diagonal \(i \). The diagonals below the main diagonal are numbered \(-1 \) through \(-n \); the diagonal starting in cell \((i, 0)\) is diagonal \(-i\). (See Figure 12.4.)

Since end spaces in the text \(T \) are free, row zero of the dynamic programming table is initialized with all zero entries. That allows a left end of \(T \) to be opposite a gap without incurring any penalty.

Definition A \(d \)-path in the dynamic programming table is a path that starts in row zero and specifies a total of exactly \(d \) mismatches and spaces.

Definition A \(d \)-path is farthest-reaching in diagonal \(i \) if it is a \(d \)-path that ends in diagonal \(i \), and the index of its ending column \(c \) (along diagonal \(i \)) is greater than or equal to the ending column of any other \(d \)-path ending in diagonal \(i \).

Graphically, a \(d \)-path is farthest reaching in diagonal \(i \) if no other \(d \)-path reaches a cell further along diagonal \(i \).
Hybrid dynamic programming: the high-level idea

At the high level, the \(O(km) \) method will run in \(k \) iterations, each taking \(O(m) \) time. In every iteration \(d \leq k \), the method finds the end of the farthest-reaching \(d \)-path on diagonal \(i \), for each \(i \) from \(-n\) to \(m \). The farthest-reaching \(d \)-path on diagonal \(i \) is found from the farthest-reaching \((d-1)\)-paths on diagonals \(i-1 \), \(i \), and \(i+1 \). This will be explained in detail below. Any farthest-reaching \(d \)-path that reaches row \(n \) specifies the end location (in \(T \)) of an occurrence of \(P \) with exactly \(d \) differences. We will implement each iteration in \(O(n+m) \) time, yielding the desired \(O(km) \)-time bound. Space will be similarly bounded.

Details

To begin, when \(d = 0 \), the farthest-reaching \(0 \)-path ending on diagonal \(i \) corresponds to the longest common extension of \(T[i..m] \) and \(P[1..n] \), since a \(0 \)-path allows no mismatches or spaces. Therefore, the farthest-reaching \(0 \)-path ending on diagonal \(i \) can be found in constant time, as detailed in Section 9.1.

For \(d > 0 \), the farthest-reaching \(d \)-path on diagonal \(i \) can be found by considering the following three particular paths that end on diagonal \(i \):

- **Path \(R_1 \)** consists of the farthest-reaching \((d-1)\)-path on diagonal \(i+1 \), followed by a vertical edge (a space in text \(T \)) to diagonal \(i \), followed by the maximal extension along diagonal \(i \) that corresponds to identical substrings in \(P \) and \(T \). (See Figure 12.5.) Since \(R_1 \) begins with a \((d-1)\)-path and adds one more space for the vertical edge, \(R_1 \) is a \(d \)-path.

- **Path \(R_2 \)** consists of the farthest-reaching \((d-1)\)-path on diagonal \(i-1 \), followed by a horizontal edge (a space in pattern \(P \)) to diagonal \(i \), followed by the maximal extension along diagonal \(i \) that corresponds to identical substrings in \(P \) and \(T \). Path \(R_2 \) is a \(d \)-path.

- **Path \(R_3 \)** consists of the farthest-reaching \((d-1)\)-path on diagonal \(i \), followed by a diagonal edge corresponding to a mismatch between a character of \(P \) and a character of \(T \), followed by a maximal extension along diagonal \(i \) that corresponds to identical substrings from \(P \) and \(T \). Path \(R_3 \) is a \(d \)-path. (See Figure 12.6.)

Each of the paths \(R_1 \), \(R_2 \), and \(R_3 \) ends with a maximal extension corresponding to identical substrings of \(P \) and \(T \). In the case of \(R_1 \) (or \(R_2 \)), the starting positions of the two substrings are given by the last entry point of \(R_1 \) (or \(R_2 \)) into diagonal \(i \). In the case of \(R_3 \), the starting position is the position just past the last mismatch on \(R_3 \).

Theorem 12.2.3. Each of the three paths \(R_1 \), \(R_2 \), and \(R_3 \) are \(d \)-paths ending on diagonal \(i \). The farthest-reaching \(d \)-path on diagonal \(i \) is the path \(R_1 \), \(R_2 \), or \(R_3 \) that extends the farthest along diagonal \(i \).

Proof Each of the three paths is an extension of a \((d-1)\)-path, and each extension adds either one more space or one more mismatch. Hence each is a \(d \)-path, and each ends on diagonal \(i \) by definition. So the farthest-reaching \(d \)-path on diagonal \(i \) must either be the farthest-reaching of \(R_1 \), \(R_2 \), or \(R_3 \), or it must reach farther on diagonal \(i \) than any of those three paths.

Let \(R^* \) be the farthest-reaching \((d-1)\)-path on diagonal \(i \). The edge of the alignment graph along diagonal \(i \) that immediately follows \(R^* \) must correspond to a mismatch, otherwise \(R^* \) would not be the farthest-reaching \((d-1)\)-path on \(i \). Let \(M \) denote that edge (see Figure 12.6).

Let \(R^* \) denote the farthest-reaching \(d \)-path on diagonal \(i \). Since \(R^* \) ends on diagonal \(i \), there is a point where \(R^* \) enters diagonal \(i \) for the last time and then never leaves diagonal \(i \). If \(R^* \) enters diagonal \(i \) for the last time above edge \(M \), then \(R^* \) must traverse edge \(M \), otherwise \(R^* \) would not reach as far as \(R_3 \). When \(R^* \) reaches \(M \) (which marks the end of \(R^* \)), it must also have \((d-1)\) differences; if that portion of \(R^* \) had less than a total of \((d-1)\) differences, then it could traverse \(M \) creating a \((d-1)\)-path on diagonal \(i \) that reached farther on diagonal \(i \) than \(R^* \), contradicting the definition of \(R^* \). It follows that if \(R^* \) enters diagonal \(i \) above \(M \), then it will have \(d \) differences after it traverses \(M \), and so it will end exactly where \(R_3 \) ends. So if \(R^* \) is not \(R_3 \), then \(R^* \) must enter diagonal \(i \) below edge \(M \).

Suppose \(R^* \) enters diagonal \(i \) for the last time below edge \(M \). Then \(R^* \) must have \(d \) differences, at that point of entry, if it had fewer differences then \(R^* \) would again fail to be the farthest-reaching \((d-1)\)-path on diagonal \(i \). Now \(R^* \) enters diagonal \(i \) for the last time either from diagonal \(i+1 \) or diagonal \(i+1 \), say \(i+1 \) (the case of \(i-1 \) is symmetric). So \(R^* \) traverses a vertical edge from diagonal \(i+1 \) to diagonal \(i \), which adds a space to \(R^* \). That means that the point where \(R^* \) enters on diagonal \(i+1 \) defines a \((d-1)\)-path on diagonal \(i+1 \). Hence \(R^* \) leaves diagonal \(i+1 \) at or above the point where the path \(R_3 \) does. Then \(R_1 \) and \(R_3 \) each have \(d \) spaces or mismatches at the points where they enter diagonal \(i \) for the last time, and then they each run along diagonal \(i \) until reaching an edge corresponding to a mismatch. It follows that \(R^* \) cannot reach farther along diagonal \(i \) than \(R_3 \) does. So in this case, \(R^* \) ends exactly where \(R_3 \) ends.
The case that \(R^* \) enters diagonal \(i \) for the last time from diagonal \(i - 1 \) is symmetric, and \(R^* \) ends exactly where \(R \) ends. In each case we have shown that \(R^* \), the assumed farthest-reaching \(d \)-path on diagonal \(i \), ends at the ending point of either \(R_1 \), \(R_2 \), or \(R_3 \). Hence the farthest-reaching \(d \)-path on diagonal \(i \) is the farthest-reaching of \(R_1 \), \(R_2 \), and \(R_3 \). □

Theorem 12.2.3 is the key to the \(O(km) \)-time method.

Hybrid dynamic programming: \(k \)-differences algorithm

begin
\[d := 0 \]
for \(i := 0 \) to \(m \) do
find the longest common extension between \(P[1..n] \) and \(T[i..m] \). This specifies the end column of the farthest-reaching 0-path on diagonal \(i \).

For \(d = 0 \) to \(k \) do
begin
For \(i = -n \) to \(m \) do
begin
using the farthest-reaching \((d - 1) \)-paths on diagonals \(i, i - 1, \) and \(i + 1 \), find the end, on diagonal \(i \), of paths \(R_1 \), \(R_2 \), and \(R_3 \). The farthest-reaching of these three paths is the farthest-reaching \(d \)-path on diagonal \(i \);
end;
end;
Any path that reaches row \(n \) in column \(c \) say, defines an inexact match of \(P \) in \(T \) that ends at character \(c \) of \(T \) and that contains at most \(k \) differences.
end.

Implementation and time analysis

For each value of \(d \) and each diagonal \(i \), we record the column in diagonal \(i \) where the farthest-reaching \(d \)-path ends. Since \(d \) ranges from 0 to \(k \) and there are only \(O(n + m) \) diagonals, all of these values can be stored in \(O(km) \) space. In iteration \(d \), the algorithm only needs to retrieve the values computed in iteration \((d - 1) \). The entire set of stored values can be used to reconstruct any alignment of \(P \) in \(T \) with at most \(k \) differences. We leave the details of that reconstruction as an exercise.

Now we proceed with the time analysis. For each \(d \) and each \(i \), the end of three particular \((d - 1) \)-paths must be retrieved. For a fixed \(d \) and \(i \), this takes constant time, so these retrievals take \(O(km) \)-time over the entire algorithm. There are also \(O(km) \) path extensions, each along a diagonal, that must be computed. But each path extension corresponds to a maximal identical substring in \(P \) and \(T \) starting at particular known positions in \(P \) and \(T \). Hence each path extension requires finding the longest substring starting at a given location in \(T \) that matches a substring at a given location of \(P \). In other words, each path extension requires a longest common extension computation. In Section 9.1 on page 198, we showed that any longest common extension computation can be done in constant time, after linear preprocessing of the strings. Hence the \(O(km) \) extensions can all be computed in \(O(n + m + km) = O(km) \) total time. Furthermore, as shown in Section 9.1.2, these extensions can be implemented using only a copy of the two strings and a suffix tree for the smaller of the two strings. In summary, we have

12.2. Faster Algorithms When Differences Are Bounded

Theorem 12.2.4. All locations in \(T \) where pattern \(P \) occurs with at most \(k \) differences can be found in \(O(km) \)-time and \(O(km) \) space. Moreover, the actual alignment of \(P \) and \(T \) for each of these locations can be reconstructed in \(O(km) \) total time.

Sometimes this \(k \) differences result is reported in a somewhat simpler but less useful form, requiring less space. If one is only interested in the \(\text{end locations in } T \) where \(P \) inexact matches in \(T \) with at most \(k \) differences, then the \(O(km) \) space bound can be reduced to \(O(n + m) \). The idea is that the ends of the farthest-reaching \((d - 1) \)-paths in each diagonal would then not be needed after iteration \(d \) and could be discarded. Thus only \(O(n + m) \) space is needed to solve the simpler problem.

Theorem 12.2.5. In \(O(km) \)-time and \(O(n + m) \) space, the algorithm can find all the end locations in \(T \) where \(P \) matches \(T \) with at most \(k \) differences.

12.2.5. The primer (and probe) selection problem revisited — An application of bounded difference matching

In Exercise 61 of Chapter 7, we introduced an exact matching version of the primer (and probe) selection problem. The simplest version of that problem starts with two strings \(\alpha \) and \(\beta \). The exact matching version is:

Exact matching primer (and probe) problem For each index \(j \) past some starting point, find the shortest substring \(\gamma \) of \(\alpha \) (if any) that begins at position \(j \) and that does not appear as a substring of \(\beta \).

That problem can be solved in time proportional to the sum of the lengths, of \(\alpha \) and \(\beta \). The exact matching version of the primer selection problem may not fully model the real primer selection problem (although as noted earlier, the exact matching version may be realistic for probe selection). Recall that primers are short substrings of DNA that hybridize to the desired part of string \(\alpha \) and that ideally should not hybridize to any parts of another string \(\beta \). Exact matching is not an adequate model of practical hybridization because a substring of DNA can hybridize, under the right conditions, to another string of DNA even without exact matching: inexact matching of the right type may be enough to allow hybridization. A more realistic version of the primer selection problem moves from exact matching to inexact matching as follows:

Inexact matching primer problem Given a parameter \(p \), find for each index \(j \) (past some starting point), the shortest substring \(\gamma \) of \(\alpha \) (if any) that begins at position \(j \) and that has edit distance at least \(\| \gamma \| / p \) from any substring of \(\beta \).

We solve the above problem efficiently by solving the following \(k \)-difference problem:

\(k \)-difference primer problem Given a parameter \(k \), find for each index \(j \) (past some starting point), the shortest substring \(\gamma \) of \(\alpha \) (if any) that begins at position \(j \) and that has edit distance at least \(k \) from any substring in \(\beta \).

Changing \(\| \gamma \| / p \) to \(k \) in the problem statement (converting the Inexact matching primer problem to the \(k \)-difference primer problem) makes the solution easier but does not reduce the utility of the solution. The reason is that the length of a practical primer must be within a fixed and fairly narrow range, so for fixed \(p \), \(\| \gamma \| / p \) also falls in a small range. Hence for
a specified \(p \), the \(k \)-difference primer problem can be solved for a small range of choices for \(k \) and still be expected to pick out useful primer candidates.

How to solve the \(k \)-difference primer problem

We follow the approach introduced in [243]. The method examines each position \(j \) in \(\alpha \) separately. For any position \(j \), the \(k \)-difference primer problem becomes:

Find the shortest prefix of string \(a[j..n] \) (if it exists) that has edit distance at least \(k \) from every substring in \(\beta \).

The problem for a fixed \(j \) is essentially the "reverse" of the \(k \)-differences inexact matching problem. In the \(k \)-difference inexact matching problem we want to find the substrings of \(T \) that \(P \) matches, with at most \(k \) differences. But now, we want to reject any prefix of \(a[j..n] \) that matches a substring of \(\beta \) with less than \(k \) differences. The viewpoint is reversed, but the machinery works.

The solution is to run the \(k \)-differences algorithm with string \(a[j..n] \) playing the role of \(P \) and \(\beta \) playing the role of \(T \). The algorithm computes the farthest-reaching \(d \)-paths, for \(d = k \), in each diagonal. If row \(n \) is reached by any \(d \)-path for \(d \leq k - 1 \), then the entire string \(a[j..n] \) matches a substring of \(\beta \) with less than \(k \) differences, so no acceptable primer can start at \(j \). But, if none of the farthest-reaching \((k - 1)\)-paths reach row \(n \), then there is an acceptable primer starting at position \(j \). In detail, if none of the farthest-reaching of the \(d \)-paths for \(d = k - 1 \) reach row \(r < n \), then the substring \(y = a[j..r] \) has edit distance at least \(k \) from every substring in \(\beta \). Moreover, if \(r \) is the smallest row with that property, then \(a[j..r] \) is the shortest substring starting at \(j \) that has edit distance at least \(k \) from every substring in \(\beta \).

The above algorithm is applied to each potential starting position \(j \) in \(\alpha \), yielding the following theorem:

Theorem 12.2.6. If \(\alpha \) has length \(n \) and \(\beta \) has length \(m \), then the \(k \)-differences primer selection problem can be solved in \(O(kmn) \) total time.

12.3. Exclusion methods: fast expected running time

The \(k \)-mismatch and \(k \)-difference methods we have presented so far all have worst-case running times of \(\Theta(kn) \). For \(k \ll n \), these speedups are significant improvements over the \(\Theta(nm) \) bound for straight dynamic programming. Still, even greater efficiency is desired when \(m \) (the size of the text \(T \)) is large. The typical situation is that \(T \) represents a large database of sequences, and the problem is to find an approximate match of a pattern \(P \) in \(T \). The goal is to obtain methods that are significantly faster than \(\Theta(kmn) \) not in worst case, but in expected running time. This is reminiscent of the way that the Boyer-Moore method, which typically skips over a large fraction of the text, has an expected running time that is sublinear in the size of the text.

Several methods have been devised for approximate matching problems whose expected running times are faster than \(\Theta(kmn) \). In fact, some of the methods have an expected running time that is sublinear in \(m \), for a reasonable range of \(k \). These methods artfully mix exact matching with dynamic programming and explicitly use many of the ideas in Parts I and II of the book. Although the details differ considerably, all the methods we will discuss have a similar high-level flavor. We focus on methods due to Baeza-Yates and Perlberg [36], Chang and Lawler [94], and Myers [342], although only the first method will be explained and analyzed in full detail. Two other methods (Wu-Manber [482] and Pevzner-Waterman [373]) will also be mentioned. These methods do not completely achieve the goal of provable linear and sublinear expected running times for all practical ranges of errors (and this remains a superb open problem), but they do achieve the goal when the error rate \(k/n \) is "modest".

Let \(\sigma \) be the size of the alphabet used in \(P \) and \(T \). As usual, \(n \) is the length of \(P \) and \(m \) is the length of \(T \). For the general discussion, an occurrence of \(P \) in \(T \) with at most \(k \) errors (mismatches or differences depending on the particular problem) will be called an approximate occurrence of \(P \). The high-level outline of most of the methods is the following:

Partition approach to approximate matching

- **Partition** \(T \) or \(P \) into consecutive regions of a given length \(r \) (to be specified later).
- **Search phase** Using various exact matching methods, search \(T \) to find length-\(r \) intervals of \(T \) (or regions, if \(T \) was partitioned) that could be contained in an approximate occurrence of \(P \). These are called surviving intervals. The nonsurviving intervals are definitely not contained in any approximate occurrence of \(P \), and the goal of this phase is to eliminate as many intervals as possible.
- **Check phase** For each surviving interval \(R \) of \(T \), use some approximate matching method to explicitly check if there is an approximate occurrence of \(P \) in a larger interval around \(R \).

The methods differ primarily in the choice of \(r \), in the choice of string to partition, and in the exact matching methods used in the search phase. The methods also differ in the definition of a region but are not generally affected by the specific choice of checking algorithm. The point of the partition approach is to exclude a large amount of \(T \), using only (sub)linear expected time in the search phase, so that only (sub)linear expected time is needed to check the few surviving intervals. A balance is needed between searching and checking because a reduction in the time used in one phase causes an increase in the time used in the other phase.

12.3.1. The BYP method

The first specific method we will look at is due to R. Baeza-Yates and C. Perlberg [36]. Its expected running time is \(O(m) \) for modest error rates (made precise below).

Let \(r = \lceil \frac{k}{2\sigma} \rceil \), and partition \(P \) into consecutive \(r \)-length regions (the last region may be of length less than \(r \)). By the choice of \(r \), there are \(k + 1 \) regions that have the full length \(r \). The utility of this partition is suggested in the following lemma.

Lemma 12.3.1. Suppose \(P \) matches a substring \(T' \) of \(T \) with at most \(k \) differences. Then \(T' \) must contain at least one interval of length \(r \) that exactly matches one of the \(r \)-length regions of the partition of \(P \).

Proof. In the alignment of \(P \) to \(T' \), each region of \(P \) aligns to some part of \(T' \) (see Figure 12.7), defining \(k + 1 \) subalignments. If each of those \(k + 1 \) subalignments were to contain at least one error (mismatch or space), then there would be more than \(k \) differences in total, a contradiction. Therefore, one of the first \(k + 1 \) regions of \(P \) must be aligned to an interval of \(T' \) without any errors.

Note that the lemma also holds even for the \(k \)-mismatch problem (i.e., when no space
Algorithm BYP

a. Let P be the set of $k+1$ substrings of P taken from the first $k+1$ regions of P's partition.

b. Build a keyword tree (Section 3.4) for the set of "patterns" P.

c. Using the Aho-Corasik algorithm (Section 3.4), find T, the set of all starting locations in T where any pattern in P occurs exactly.

d. For each index i in T, use an approximate matching algorithm (usually based on dynamic programming) to locate the end points of all approximate occurrences of P in the substring $T[i-n-k..i+n+k]$ (i.e., in an appropriate-length interval around i).

By Lemma 12.3.1, it is easy to establish that the algorithm correctly finds all approximate occurrences of P in T. The point is that the interval around each i is "large enough" to align with any approximate occurrence of P that spans i, and there can be no approximate occurrence of P outside such an interval. A formal proof is left as an exercise. Now we focus on specific implementation details and time analysis.

Building the keyword tree takes $O(n)$ time, and the Aho-Corasik algorithm takes $O(m)$ (worst-case) time (Section 3.4). So steps b and c take $O(n+m)$ time. There are a number of alternate implementations for steps b and c. One is to build a suffix tree for T, and then use it to find every occurrence in T of a pattern in P (see Section 7.1). However, that would be very space intensive. A space-efficient version of this approach is to construct a generalized suffix tree for only P, and then match T to it (in the way that matching statistics are computed in Section 7.8.1). Both approaches take $\Theta(n+m)$ worst-case time, but are no faster in expected time because every character in T is examined. A faster approach in practice is to use the Boyer-Moore set matching method based on suffix trees, which was developed in Section 7.16. That algorithm will skip over parts of T, and hence it breaks the $\Theta(m)$ bottleneck. A different variation was developed by Wu and Manber [482] who implement steps b and c using the Shift-And method (Section 4.2) on a set of patterns. Another approach, found in the paper of Pevzner and Waterman [373] and elsewhere, uses hashing to identify long exact matching substrings of P and T. Of course, one can use suffix trees to find long common substrings, and one could develop a Karp-Rabin type method as well. Hashing, or approaches based on suffix trees, that look directly for long common substrings between P and T, seem a bit more robust than BYP because there is no string partition involved. But the only stated time bounds in [373] are the same as those for BYP.

In the checking phase, step d, the algorithm executes some approximate matching algorithm between P and an interval of T of length $O(n)$, for each index in T. Naively, each of these checks can be done in $O(n^2)$ time by dynamic programming (global alignment). Even this time bound will be adequate to establish an expected $O(m)$ overall running time for the range of error rates that will be detailed below. Alternately, the Landau-Vishkin method (Section 12.2) based on suffix trees could be used, so that each check takes only $O(kn)$ worst-case time. If no spaces are allowed in the alignment of P to T (only matches and mismatches) then the simpler $O(kn)$-time approach based on longest common extension (Section 9.1) can be used, or if attention is paid to exactly where in P any match is found, then $O(n)$ time suffices for each check.

12.3.2. Expected time analysis of algorithm BYP

Since steps b and c run in $O(m)$ worst-case time, we only need to analyze step d. The key is to estimate the expected size of I.

In the following analysis, we assume that each character of T is drawn uniformly (i.e., with equal probability) from an alphabet of size σ. However, P can be an arbitrary string. Consider any pattern $p \in P$. Since p has length r, and T contains roughly m substrings of length r, the expected number of exact occurrences of p in T is m/σ^r. Therefore, the expected total number of occurrences in T of patterns from P (i.e., the expected size of I) is $m(k + 1)/\sigma^r$.

For each $i \in T$, the algorithm spends $O(n^2)$ time (or less if faster methods are used) in the checking phase. So the expected checking time is $mn^2(k + 1)/\sigma^r$. The goal is to make the expected checking time linear in m for modest k, so we must determine what values of k make

$$\frac{mn^2(k + 1)}{\sigma^r} < cm,$$

for some constant c.

To simplify the analysis, replace k by $n - 1$, and solve for r in

$$\frac{mn^3}{\sigma^r} = cm.$$

This gives $\sigma^r = \frac{n^3}{c} \cdot \log \sigma$, so $r = \log \sigma \cdot n^3 - \log c$. But $r = \log \sigma$, so

Theorem 12.3.1. Algorithm BYP runs in $O(m)$ time for $k = O(\log n)$.

Stated another way, as long as the error rate is less than one in $\log n$ characters, algorithm BYP will run in linear time as a function of m.

The bottleneck in the BYP method is the $\Theta(m)$ time required to run the Aho--Corasik algorithm. Using the Boyer--Moore set matching method should reduce that time in practice, but we cannot present a time analysis for that approach. However, the Chang--Lawler method has an expected time bound that is provably sublinear for $k = O(\log n)$.

12.3.3. The Chang-Lawler method

For ease of exposition, we will explain the Chang-Lawler (CL) method [94] for the k-mismatches problem; we leave the extension to k-differences as an exercise.

In CL, it is string T, not P, that is partitioned into consecutive fixed regions of length $r = n/2$. These regions are large compared to the regions in BYP. The purpose of the length $n/2$ is to assure that no matter how P is aligned to T (without inserted spaces), at least one of the fixed regions in T's partition is completely contained in the interval spanned by P (see Figure 12.8). Therefore, if P occurs in T with at most k mismatches, there must be one region of T that is spanned by that occurrence of P and, of course, that region matches its counterpart in P with at most k mismatches. Based on this observation, the search phase of CL examines each region in the partition of T to find regions that cannot match
The CL search is executed on $2m/n$ regions of T. For any region R let j^* be the last value of j (i.e., the value of j when cn reaches k or when $j - j^*$ exceeds $n/2$). Thus, in R, matching statistics are computed for the interval of length $j^* - j^* < n/2$. With the matching statistics algorithm in Section 7.8.1, the time used to compute those matching statistics is $O(j^* - j^*)$. Now the expected value of $j^* - j^*$ is less than or equal to k times the expected value of $ms(i)$, for any i. Let $E(M)$ denote the expected value of a matching statistic, and let e denote the expected number of regions that survive the search phase. Then the expected time for the search phase is $O(2mkE(M)/n)$, and the expected time for the checking phase is $O(kn)$.

In the following analysis, we assume that P is a random string where each character is chosen uniformly from an alphabet of size σ.

Lemma 12.3.3. $E(M)$, the expected value of a matching statistic, is $O(\log_\sigma n)$.

Proof For fixed length d, there are roughly n substrings of length d in P, and there are σ^d substrings of length d that can be constructed. So, for any specific string α of length d, the probability that α is found somewhere in P is less than n/σ^d. This is true for any d, but vacuously true until $\sigma^d = n$ (i.e., when $d = \log_\sigma n$).

Let X be the random variable that has value $\log_\sigma n$ for $ms(i) \leq \log_\sigma n$; otherwise it has value $ms(i)$. Then $$E(M) < E(X) < \log_\sigma n + \frac{\sum \log_\sigma \sigma^i}{\log_\sigma \sigma} = \log_\sigma n + 2.$$ □

Corollary 12.3.1. The expected time that CL spends in the search phase is $O(2mk\log_\sigma n/n)$, which is sublinear in m for $k < n/\log_\sigma n$.

The analysis for e, the expected number of surviving regions is too difficult to present here. It is shown in [94] that when $k = O(n/\log_\sigma n)$, then $e = m/n^4$, so the expected time that CL spends in the checking phase is $O(km/n^4) = o(m)$. The search phase of CL is so effective in excluding regions of T that the checking phase has very small expected running time.

12.3.4. Multiple filtration for k-mismatches

Both the BYP and the CL methods use fairly simple combinatorial criteria in their search phases to exclude intervals of T. One can devise more stringent conditions that are necessary for an interval of T to be contained in an approximate occurrence of P. In the context of the k-mismatches problem, conditions of this type (called filtration conditions) were developed and studied by Pevzner and Waterman [373]. These conditions are used together with substring hashing to obtain another linear expected-time method for the k-mismatches problem. Empirical results are given in [373] that show faster running times in practice than other methods for the k-mismatch problem.

12.3.5. Myers’s sublinear-time method

Gene Myers [342, 337] developed an exclusion method that is more sophisticated than the ones we have discussed so far and that runs in sublinear time for a wider range of error rates. The method handles approximate matching with insertions and deletions as well as mismatches. The full algorithm and its analysis are too complex for detailed discussion.
Since the intervals of interest double in length, the time used per interval grows four fold in each successive iteration. However, the number of surviving matches is expected to fall hyper-exponentially in each successive iteration, more than offsetting the increase in computation time per interval.

With this iterative expansion, the effort expended to check any initial surviving match is doled out incrementally throughout the \(O(\log \frac{1}{\epsilon^2}) \) iterations, and is not continued for any surviving match past an iteration where it is excluded. We now describe in a bit more detail how the initial surviving matches are found and how they are incrementally extended in successive iterations.

The first iteration

Definition For a string \(S \) and value of \(\epsilon \), let \(d = \epsilon |S| \). The \(d \)-neighborhood of \(S \) is the set of all strings that \(\epsilon \)-match \(S \).

For example, over the two-letter alphabet \(\{a, b\} \), if \(S = aba \) and \(d = 1 \), then the \(1 \)-neighborhood of \(S \) is \(\{baa, aa, abb, aba, abaa, abb, abab, ba, aa, ab\} \). It is created from \(S \) by the operations of mismatch, insertion and deletion respectively. The condensed \(d \)-neighborhood of \(S \) is created from the \(d \)-neighborhood of \(S \) by removing any substring that is a prefix of another string in the \(d \)-neighborhood. The condensed \(1 \)-neighborhood of \(S \) is \(\{baa, aa, aba, baba, abaa, abab, ab\} \).

Recall that pattern \(P \) is initially partitioned into subpatterns of length \(\log m \), and that the \(1 \)-neighborhood of \(P \) is \(\{baa, aa, aba, baba, abaa, abab, ab\} \). In the first iteration, the algorithm (conceptually) constructs the condensed \(d \)-neighborhood for each subpattern in \(P \), and then finds all locations of subpatterns in text \(T \) that exactly match one of the subpatterns in one of the condensed \(d \)-neighborhoods. In this way, the method finds all subpatterns of \(T \) that \(\epsilon \)-match one of the subpatterns in \(P \). These \(\epsilon \)-matches form the initial surviving matches.

In actuality, the tasks of generating the substrings in the condensed \(d \)-neighborhoods and of searching for their exact occurrences in \(T \) are intertwined and require both to be preprocessed into some index structure. This structure could be a suffix tree, a suffix array or a hash table holding short subpatterns of \(T \). Details are found in [342].

Myers [342] shows that when the length of the subpatterns is \(O(\log m) \), then the first iteration can be implemented to run in \(O(km\log m) \) expected time. The function \(p(\epsilon) \) is complicated, but it is convex (negative second derivative) increasing, and increases more slowly as the alphabet size grows. For DNA, it has value less than one for \(\epsilon \leq \frac{1}{2} \), and for proteins it has value less than one for \(\epsilon \leq 0.56 \).

Successive iterations

To explain the central idea, let \(\alpha = \alpha_0 \alpha_1 \), where \(|\alpha_0| \) is assumed equal to \(|\alpha_1| \).

Lemma 12.3.4. Suppose \(\alpha \) \(\epsilon \)-matches \(\beta \). Then \(\beta \) can be divided into two subpatterns \(\beta_0 \) and \(\beta_1 \), such that \(\beta = \beta_0 \beta_1 \), and either \(\alpha_0 \) \(\epsilon \)-matches \(\beta_0 \) or \(\alpha_1 \) \(\epsilon \)-matches \(\beta_1 \).

This lemma (used in reverse) is the key to determining how to expand the intervals around the surviving matches in each iteration. For simplicity, assume that \(n \) is a power of two and that \(\log m \) is also a power of two. Let \(B \) be a binary tree representing successive divisions of \(P \) into two equal size parts, until each part has length \(\log m \) (see Figure 12.10). The substrings written at the leaves are the subpatterns used in the first iteration of Myers' algorithm. Iteration \(i \) of the algorithm examines subpatterns of \(P \) that label (some) nodes of \(B \) levels above the leaves (counting the leaves as level 1).
12.3.6. Final comment on exclusion methods

The fast expected-time exclusion methods have all been developed with the motivation of searching large DNA and protein databases for approximate occurrences of query strings. But the proven results are a bit weak for the case of protein database search, because error rates as high as 85% (the so-called twilight zone) are of great interest when comparing protein sequences [127, 360]. In the twilight zone, evidence of common ancestry may still remain, but it takes some skill to determine if a given match is meaningful or not. Another problem with the exclusion methods presented here is that not all of the methods or analyses extend nicely to the case of weighted or local alignment.

Nonetheless, these results are promising, and the open problem of finding sublinear expected-time algorithms for higher error rates is very inviting. Moreover, we will see in Chapter 15 on database searching that the most effective practical database search methods in use today (BLAST, FASTA, and variants) can be considered as exclusion methods and are based on ideas similar to some of the more formal methods presented here.

12.4. Yet more suffix trees and more hybrid dynamic programming

Although the suffix tree was initially designed and employed to handle complex problems of exact matching, it can be used to great advantage in various problems of inexact matching. This has already been demonstrated in Sections 9.4 and 12.2 where the k-mismatch and k-difference problems were discussed. The suffix tree in the latter application was used in combination with dynamic programming to produce a hybrid dynamic programming method that is faster than dynamic programming alone. One deficiency of that approach is that it does not generalize nicely to problems of weighted alignment. In this section, we introduce a different way to combine suffix trees with dynamic programming for problems of weighted alignment. These ideas have been claimed to be very effective in practice, particularly for large computational projects. However, the methods do not always lend themselves to greatly improved provable, worst-case time bounds. The ideas presented here loosely follow the published work of Ukkonen [437] and an unpublished note of Gonsus and Baeza-Yates [34]. The thesis by Biegański [63] discusses a related idea for using suffix trees in regular expression pattern matching (with errors) and its large-scale application in managing genomic databases. The method of Gonsus and Baeza-Yates has been implemented and extensively used for large-scale protein comparisons [57], [183].

Two problems

We assume the existence of a scoring matrix used to compute the value of any alignment, and hence "edit distance" here refers to weighted edit distance. We will discuss two problems in the text and introduce two more related problems in the exercises.

1. The P-against-all problem Given strings P and T, compute the edit distance between P and every substring T' of T.

2. The threshold all-against-all problem Given strings P and T and a threshold d, find every pair of substrings P' of P and T' of T such that the edit distance between P' and T' is less than d.

The threshold-all-against-all problem is similar to problems mentioned in Section 12.2.1 concerning the construction of nonredundant sequence databases. However, the threshold all-against-all problem is harder, because it asks for the alignment of all pairs of substrings,
not just the alignment of all pairs of strings. This critical distinction has been the source of some confusion in the literature [50], [56].

12.4. The P-against-all problem

The P-against-all problem is an example of a large-scale alignment problem that asks for a great amount of related alignment information. If not done carefully, its solution will involve a large amount of redundant computation.

Assume that P has length n and T has length m > n. The most naive solution to the P-against-all problem is to enumerate all \(\binom{m}{n} \) substrings of T, and then separately compute the edit distance between P and each substring of T. This takes \(\Theta(m^2n) \) total time. A moment's thought leads to an improvement. Instead of choosing all substrings of T, we need only choose each suffix S of T and compute the dynamic programming edit distance table for strings P and S. If S begins at position i of T, then the last row of that table gives the edit distance between P and every substring of T that begins at position i. That is, the edit distance between P and T[i..j] is found in cell (i, j - i + 1) of the table. This approach takes \(\Theta(n^2m) \) total time.

We are interested in the P-against-all problem when T is very long. In that case, the introduction of a suffix tree may greatly speed up the dynamic programming computation, depending on how much repetition is contained in string T.\(^2\) (See also Section 7.11.1.) To get the basic idea of the method, consider two substrings \(T'' \) and \(T''' \) of T that are identical for their first \(n' \) characters. In the dynamic programming approach above, the edit distances between \(P \) and \(T'' \) and between \(P \) and \(T''' \) would be computed separately. But if we compute edit distance columnwise (instead of in the usual rowwise manner), then we can combine the two edit distance computations for the first \(n' \) columns, since the first \(n' \) characters of \(T'' \) and \(T''' \) are the same (see Figure 12.11). It would be redundant to compute the first \(n \) by \(n' \) subtable separately for the two edit distances. This idea of using the commonality of \(T'' \) and \(T''' \) can be formalized and fully exploited through the use of a suffix tree for string T.

Consider a suffix tree \(T \) for string T and recall that any path from the root of \(T \) specifies some substring \(S \) of T. If we traverse a path from the root of \(T \), and we let S denote the growing substring corresponding to that path, then during the traversal we can build up (columnwise) the dynamic programming table for the edit distance between \(P \) and the growing substring \(S \) of T. The full idea then is to traverse \(T \) in a depth-first manner, computing the appropriate dynamic programming column (from the column to its left) for every substring \(S \) specified by the current path. When the traversal reaches a node \(v \) of \(T \), it stores there the last (most recently generated) column and last subrow of the current subtable (the last row will always be row \(n \)). That is, if \(S \) is the substring specified by the path to a node \(v \), then what will be stored at \(v \) is the last row and column of the dynamic programming table for the edit distance between \(P \) and \(S \). When the depth-first traversal visits a child \(v' \) of \(v \), it adds columns (one for each character on the (\(v, v' \)) edge) to this table to correspond to the extension of substring \(S \). When the depth-first traversal reaches a leaf of \(T \) corresponding to the suffix starting at a position \(i \) (say) of T, it can then output the values in the last row of the current table. Those values specify the edit distances between \(P \) and every substring beginning at position \(i \) of T. When the depth-first traversal backs up to a node \(v \), and \(v \) has an unvisited child \(v' \), the row and column stored at \(v \) are retrieved and extended as the traversal follows a new (\(v, v' \)) edge (see Figure 12.12).

It should be clear that this suffix-tree approach does correctly compute the edit distance between \(P \) and every substring of T, and it does exploit repeated substrings (small or large) that may occur in T. But how effective is it compared to the \(\Theta(n^2m) \)-time dynamic programming approach?

\(^2\) Recent estimates put the amount of repeated human DNA at 50 to 60%. That is, 50 to 60% of all human DNA is contained in nonrepetitive length, structured substrings that show up repeatedly throughout the genome. Similar levels of redundancy appear in many other organisms.
12.4. SUFFIX TREES AND HYBRID DYNAMIC PROGRAMMING

Now we consider a more ambitious problem: Given strings P and T, find every pair of substrings where the edit distance is below a fixed threshold d. Compositions of this type have been conducted when P and T are both equal to the combined set of protein strings in the database Swiss-Prot [183]. The importance of this kind of large-scale computation and the way in which its results are used are discussed in [57]. The way suffix trees are used to accelerate the computation is discussed in [34].

Since P and T have respective lengths of n and m, the full all-against-all problem (with threshold ∞) calls for the computation of n^2m^2 pieces of output. Hence no method for this problem can run faster than $O(n^2m^2)$ time. Moreover, that time bound is easily achieved: Pick a pair of starting positions in P and T (in nm possible ways), and for each choice of starting positions i, j, fill in the dynamic programming table for the edit distance of $P[1..i]$ and $T[1..j]$ (in $O(nm)$ time). For any choice of i and j, the entries in the corresponding table give the edit distance for every pair of substrings that begin at position i in P and at position j in T. Thus, achieving the $O(n^2m^2)$ bound for the full all-against-all problem does not require suffix trees.

But the full all-against-all problem calls for an amount of output that is often excessive, and the output can be reduced by choosing a meaningful threshold. Or the criteria for reporting a substring pair might be a function of both length and edit distance. Whatever the specific reporting criteria, if it is no longer necessary to report the edit distance of every pair, it is no longer certain that $O(n^2m^2)$ time is required. Here we develop a method whose worst-case running time is expressed as $O(C + R)$, where C is a computation time that may be less than $O(n^2m^2)$ and R is the output size (i.e., the number of reported pairs of substrings). In this setting, the use of suffix trees may be quite valuable depending on the size of the output and the amount of repetition in the two strings.

12.4.2. The (threshold) all-against-all problem

An $O(C + R)$-time method

The method uses a suffix tree T_P for string P and a suffix tree T_T for string T. The worst-case time for the method will be shown to be $O(C + R)$, where C is the length of T_T times the length of T_P independent of whatever the output criteria are, and R is the size of the output. (The definition of the length of a suffix tree is found in Section 12.4.1.) That is, the method will compute certain dynamic programming cell values, which will be the same no matter what the output criteria are, and then when a cell value satisfies the particular output criteria, the algorithm will collect the relevant substrings associated with that cell. Hence our description of the method holds for the full all-against-all problem, the threshold version of the problem, or any other version with different reporting criteria.

To start, recall that each node in T_P represents a substring of P and that every substring of P is a prefix of a substring represented by a node of T_P. In particular, each suffix of P is represented by a leaf of T_P. The same is true of T and T_T.

Definition The dynamic programming table for a pair of nodes (u, v), from T_P and T_T, respectively, is defined as the dynamic programming table for the edit distance between the string represented by node u and the string represented by node v.
The threshold all-against-all problem could be solved (ignoring time) by computing the dynamic programming table for each pair of leaves, one from each tree, and then examining every entry in each of those tables. Hence it certainly would be solved by computing the dynamic programming table for each pair of nodes and then examining each entry in those tables. This is essentially what we will do, but we proceed in a way that avoids redundant computation and examination. The following lemma gives the key observation.

Lemma 12.4.2. Let \(u' \) be the parent of node \(u \) in \(T_P \) and let \(\alpha \) be the string labeling the edge between them. Similarly, let \(v' \) be the parent of \(v \) in \(T_T \) and let \(\beta \) be the string labeling the edge between them. Then, all but the bottom right \(|\alpha| \times |\beta| \) entries in the dynamic programming table for the pair \((u, v) \) appear in one of the tables for \((u', v') \), \((u', v) \), or \((u, v') \). Moreover, that bottom right part of the \((u, v) \) table can be obtained from the other three tables in \(O(|\alpha||\beta|) \) time. (See Figure 12.13.)

The proof of this lemma is immediate from the definitions and the edit distance recurrences.

The computation for the new part of the \((u, v) \) table produces an \(|\alpha| \times |\beta| \) rectangular subtable that forms the lower right section of the \((u, v) \) table. In the algorithm to be developed below, we will store and associate with each node pair \((u, v)\) the last column and the last row of this \(|\alpha| \times |\beta| \) subtable.

We can now fully describe the algorithm.

Details of the algorithm

First, number the nonroot nodes of \(T_P \) according to string-depth, with smaller string-depth first.\(^3\) Separate the nodes of \(T_T \) according to string-depth. Then form a list \(L \) of all pairs of node numbers, one from each tree, in lexicographic order. Hence, pair \((u, v)\) appears before pair \((p, q)\) in the list if and only if \(u \) is less than \(p \), or if \(u \) is equal to \(p \) and \(v \) is less than \(q \). (See Figure 12.14.) It follows that if \(u' \) is the parent of \(u \) in \(T_P \) and \(v' \) is the parent of \(v \) in \(T_T \), then \((u', v')\) appears before \((u, v)\).

Next, process each pair of nodes \((u, v)\) in the order that it appears in \(L \). Assume again that \(u' \) is the parent of \(u \), that \(v' \) is the parent of \(v \), and that the labels on the respective edges are \(\alpha \) and \(\beta \). To process a node pair \((u, v)\), retrieve the value in the single lower right cell from the stored part of the \((u', v')\) table; retrieve the column stored with the pair \((u', v')\), and retrieve the row stored with the pair \((u', v)\). These three pairs of nodes have already been processed, due to the lexicographic ordering of the list. From those retrieved values, and from the substrings \(\alpha \) and \(\beta \), compute the new \(|\alpha| \times |\beta| \) subtable completing the \((u, v)\) table. Store with pair \((u, v)\) the last row and column of newly computed subtable.

Now suppose cell \((i, j)\) is in the new \(|\alpha| \times |\beta| \) subtable, and its value satisfies the output criteria. The algorithm must find and output all locations of the two substrings specified by \((i, j)\). As usual, a depth-first traversal is used, beginning at \((i, j)\) and working its way to the leaves. When a cell \((k, l)\) is encountered that satisfies the reporting criteria, the time to collect the pairs is proportional to the number of them.

Correctness and time analysis

The correctness of the method follows from the fact that at the highest level of description, the method computes the edit distance for every pair of substrings, one from each string. It does this by generating and examining every cell in the dynamic programming table for every pair of substrings (although it avoids redundant examinations). The only subtle point is that the method generates and examines the cells in each table in an incremental manner to exploit the commonalities between substrings, and hence it avoids regenerating and reexamining any cell that is part of more than one table. Further, when the method finds a cell satisfying the reporting criteria (a function of value and length), it can find all

\(^3\) Actually, any topological numbering will do, but string-depth has some advantages when heuristic accelerations are added.
of substrings specified by that cell using a traversal to a subset of leaves in the trees. A formal proof of correctness is left to the reader as an exercise.

The line analysis, recall that the length of \(T_P \) is the sum of lengths of all the edge

- \(\alpha \). If \(P \) has length \(n \), then the length of \(T_P \) ranges between \(n \) and \(n^2/2 \), depending on how repetitive \(P \) is. The length of \(T_P \) is similarly defined and ranges between \(m \) and \(m^2/2 \), where \(m \) is the length of \(T \).

Lemma 12.4.3. The time used by the algorithm for all the needed dynamic programming computations and cell examinations is proportional to the product of the length of \(T_P \) and the length of \(T_F \). Hence that time, defined as \(C \), ranges between \(nm \) and \(n^2m^2 \).

Proof In the algorithm, each pair of nodes is processed exactly once. At the point a pair \((u, v)\) is processed, the algorithm spends \(O(|\alpha| |\beta|) \) time to compute a suitable and examine it, where \(\alpha \) and \(\beta \) are the labels on the edges into \(u \) and \(v \), respectively. Each edge-label in \(T_P \) therefore forms exactly one dynamic programming table with each of the edge-labels in \(T_F \). The time to build those tables is \(|\alpha|/\text{length of } T_F \). Summing over all edges in \(T_P \) gives the claimed time bound.

The above lemma counts all the time used in the algorithm except the time used to collect and report pairs of substrings (by their starting position, length, and edit distance). But since the algorithm collects substrings when it sees a cell value that satisfies the reporting criteria, the time devoted to output is just the time needed to traverse the tree to collect output pairs. We have already seen that this time is proportional to the number of pairs collected, \(R \). Hence, we have

Theorem 12.4.3. The complete time for the algorithm is \(O(C + R) \).

How effective is the suffix tree approach?

As in the \(P \)-against-all problem, the effectiveness of this method in practice depends on the lengths of \(T_P \) and \(T_F \). Clearly, the product of those lengths, \(C \), falls as \(P \) and \(T \) increase in repetitiveness. We have built a suffix tree for DNA strings of total length around one million bases and have observed that the tree length is around one tenth of the maximum possible. In that case, \(C \) is around \(n^2m^2/100 \), so all else being equal (which is unrealistic), standard dynamic programming for the all-against-all problem should run about one hundred times slower than the hybrid dynamic programming approach.

A vastly larger “all-against-all” computation on amino acid strings was reported in [183]. Although their description is very vague, they essentially used the suffix tree approach described here, computing similarity instead of edit distance. But, rather than a hundred-fold speedup, they claim to have achieved nearly a million-fold speedup over standard dynamic programming. That level of speedup is not supported by theoretical considerations (recall that for a random string \(S \) of length \(m \), a substring of length greater than \(\log m \) is very unlikely to occur in \(S \) more than once). Nor is it supported by the experiments we have done. The explanation may be the incorporation of an early stopping rule described in [183] only by the vague statement “Time is saved because the matching of Patricia\(^5\) subtrees is aborted when the score falls below a liberally chosen similarity limit”. That rule is apparently very effective in reducing running time, but without a

4 They finish a computation in 405 cpu days that they claim would otherwise have taken more than a million cpu years without the use of suffix trees.

5 A Patricia tree is a variant of a suffix tree.

12.5. A faster (combinatorial) algorithm for longest common subsequence

The longest common subsequence problem (lcs) is a special case of general weighted alignment or edit distance, and it can be solved in \(\Theta(nm) \) time either by applying those general methods or with more direct recurrences (Exercise 16 of Chapter 11). However, the lcs problem plays a special role in the field of string algorithms and merits additional discussion. This is partly for historical reasons (many string and alignment ideas were first worked out for the special case of lcs) and partly because lcs often seems to capture the desired relationship between the strings of interest.

In this section we present an alternative (combinatorial) method for lcs that is not based on dynamic programming. For two strings of lengths \(n \) and \(m > n \), the method runs in \(O(r \log n) \) worst-case time, where \(r \) is a parameter that is typically small enough to make this bound attractive compared to \(\Theta(nm) \). The main idea is to reduce the lcs problem to a simpler sounding problem, the longest increasing subsequence problem (lis). The method can be adapted to compute the length of the lcs in \(O(r \log n) \) time, using only linear space, without the help for Hirschberg’s method. That will be considered in Exercise 23.

12.5.1. Longest increasing subsequence

Definition Let \(\Pi \) be a list of \(n \) integers, not necessarily distinct. An increasing subsequence of \(\Pi \) is a subsequence of \(\Pi \) whose values strictly increase from left to right.

For example, if \(\Pi = 5, 3, 4, 9, 6, 2, 1, 8, 7, 10 \) then \([3, 4, 6, 8, 10] \) and \([5, 9, 10] \) are both increasing subsequences in \(\Pi \). (Recall the distinction between subsequences and substrings.) We are interested in the problem of computing a longest increasing subsequence in \(\Pi \). The method we develop here will later be used to solve the problem of finding the longest common subsequence of two (or more) strings.

Definition A decreasing subsequence of \(\Pi \) is a subsequence of \(\Pi \) where the numbers are nonincreasing from left to right.

For example, under this definition, \([8, 5, 5, 3, 1, 1] \) is a decreasing subsequence in the sequence \(4, 8, 3, 9, 5, 2, 5, 3, 10, 1, 9, 1, 6 \). Note the asymmetry in the definitions of increasing and decreasing subsequences. The term “decreasing” is slightly misleading. Although “nonincreasing” is more precise, it is too clumsy a term to use in high repetition.

Definition A cover of \(\Pi \) is a set of decreasing subsequences of \(\Pi \) that contain all the numbers of \(\Pi \).

For example, \([5, 3, 2, 1]; [4]; [9, 6]; [8, 7]; [10]\) is a cover of \(\Pi = 5, 3, 4, 9, 6, 2, 1, 8, 7, 10 \). It consists of five decreasing subsequences, two of which contain only a single number.

Definition The size of the cover is the number of decreasing subsequences in it, and a smallest cover is a cover with minimum size among all covers.

We will develop an \(O(n \log n) \)-time method that simultaneously constructs a longest increasing subsequence (lis) and a smallest cover of \(\Pi \). The following lemma is the key.
Lemma 12.5.1. If \(I \) is an increasing subsequence of \(\Pi \) with length equal to the size of a cover of \(\Pi \), call it \(C \), then \(I \) is a longest increasing subsequence of \(\Pi \) and \(C \) is a smallest cover of \(\Pi \).

Proof. No increasing subsequence of \(\Pi \) can contain more than one number contained in any decreasing subsequence of \(\Pi \), since the numbers in an increasing subsequence strictly increase left to right, whereas the numbers in a decreasing subsequence are nonincreasing left to right. Hence no increasing subsequence of \(\Pi \) can have length greater than the size of any cover of \(\Pi \).

Now assume that the length of \(I \) is equal to the size of \(C \). This implies that \(I \) is a longest increasing subsequence of \(\Pi \) because no other increasing subsequence can be longer than the size of \(C \). Conversely, \(C \) must be a smallest cover of \(\Pi \), for if there were a smaller cover \(C' \), then \(I \) would be longer than the size of \(C' \), which is impossible. Hence, if the length of \(I \) equals the size of \(C \), then \(I \) is a longest increasing subsequence and \(C \) is a smallest cover.

Lemma 12.5.1 is the basis of a method to find a longest increasing subsequence and a smallest cover of \(\Pi \). The idea is to decompose \(\Pi \) into a cover \(C \) such that there is an increasing subsequence \(I \) containing exactly one number from each decreasing subsequence in \(C \). Without concern for efficiency, a cover of \(\Pi \) can be built in the following straightforward way:

Naive cover algorithm. Starting from the left of \(\Pi \), examine each successive number in \(\Pi \) and place it at the end of the first (left-most) decreasing subsequence that it can extend. If there are no decreasing subsequences it can extend, then start a new (decreasing) subsequence to the right of all the existing decreasing subsequences.

To elaborate, if \(x \) denotes the current number from \(\Pi \) being examined, then \(x \) extends a subsequence \(i \) if \(x \) is smaller than or equal to the current number at the end of subsequence \(i \), and if \(x \) is strictly larger than the last number of each subsequence to the left of \(i \).

For example, with \(\Pi \) as before the first two numbers examined are put into a decreasing subsequence \([5, 3] \). Then the number 4 is examined, which is in position 3 of \(\Pi \). Number 4 cannot be placed at the end of the first subsequence because 4 is larger than 3. So 4 begins a new subsequence of its own to the right of the first subsequence. Next, the number 9 is considered and since it cannot be added to the end of either subsequence \([5, 3] \) or 4, it begins a third subsequence. Next, 6 is considered; it can be added to 9 but not to the end of any of the two subsequences to the left of 9. The final cover of \(\Pi \) produced by the algorithm is shown in Figure 12.15, where each subsequence runs vertically.

Clearly, this algorithm produces a cover of \(\Pi \), which we call the greedy cover. To see whether a number \(x \) can be added to any particular decreasing subsequence, we only have to compare \(x \) to the number, say \(y \), currently at the end of the subsequence -- \(x \) can be added if and only if \(x \leq y \). Hence if there are \(k \) subsequences at the time \(x \) is considered, then the time to add \(x \) to the correct subsequence is \(O(k) \). Since \(k \leq n \), we have the following:

Lemma 12.5.2. The greedy cover of \(\Pi \) can be built in \(O(n^2) \) time.

12.5. A Faster Algorithm for Longest Common Subsequence

We will shortly see how to reduce the time needed to find the greedy cover to \(O(n \log n) \), but we first show that the greedy cover is a smallest cover of \(\Pi \) and that a longest increasing subsequence can easily be extracted from it.

Lemma 12.5.3. There is an increasing subsequence \(I \) of \(\Pi \) containing exactly one number from each decreasing subsequence in the greedy cover \(C \). Hence \(I \) is the longest possible, and \(C \) is the smallest possible.

Proof. Let \(x \) be an arbitrary number placed into decreasing subsequence \(i \) (counting from the left) by the greedy algorithm. At the time \(x \) was considered, the last number \(y \) of subsequence \(i \) must have been smaller than \(x \). Also, since \(y \) was placed before \(x \) was, \(y \) appears before \(x \) in \(\Pi \), and \((y, x) \) forms an increasing subsequence in \(\Pi \). Since \(x \) was arbitrary, the same argument applies to \(y \), and if \(i \) \(\neq 1 \) then there must be a number \(z \) in subsequence \(i - 2 \) such that \(z < y \) and \(z \) appears before \(y \) in \(\Pi \). Repeating this argument until the first subsequence is reached, we conclude that there is an increasing subsequence in \(\Pi \) containing one number from each of the first \(i \) subsequences in the greedy cover and ending with \(x \). Choosing \(x \) to be any number in the last decreasing subsequence proves the lemma.

Algorithmically, we can find a longest increasing subsequence given the greedy cover as follows:

Longest increasing subsequence algorithm.

```
begin

0. Set \( i \) to be the number of subsequences in the greedy cover. Set \( I \) to the empty list; pick any number \( x \) in subsequence \( i \) and place it on the front of list \( I \).
1. While \( i > 1 \) do
   begin
2. Scanning down from the top of subsequence \( i - 1 \), find the first number \( y \) that is smaller than \( x \).
3. Set \( x \) to \( y \) and \( i \) to \( i - 1 \).
4. Place \( x \) on the front of list \( I \).
   end
end
```

Since no number is examined twice during this algorithm, a longest increasing subsequence can be found in \(O(n) \) time given the greedy cover.

An alternate approach is to use pointers. As the greedy cover is being constructed, whenever a number \(x \) is added to subsequence \(i \), connect a pointer from \(x \) to the number at the current end of subsequence \(i - 1 \). After the greedy algorithm finishes, pick any number in the last decreasing subsequence and follow the unique path of pointers starting from it and ending at the first subsequence.

Faster construction of the greedy cover.

Now we reduce the time to construct a greedy cover to \(O(n \log n) \), reducing the overall running time to find a longest increasing subsequence to \(O(n \log n) \) as well.

At any point during the running of the greedy cover algorithm, let \(L \) be the ordered list containing the last number of each of the decreasing subsequences built so far. That
is, the last number from any subsequence \(i - 1 \) appears in \(L \) before the last number from subsequence \(i \).

Lemma 12.5.4. At any point in the execution of the algorithm, the list \(L \) is sorted in increasing order.

Proof. Assume inductively that the lemma holds through iteration \(k - 1 \). When examining the \(k \)th number in \(P \), call it \(x \), suppose \(x \) is to be placed at the end of subsequence \(i \). Let \(w \) be the current number at the end of subsequence \(i - 1 \), let \(y \) be the current number at the end of subsequence \(i \) (if any), and let \(z \) be the number at the end of subsequence \(i + 1 \) (if it exists). Then \(w < x \leq y \) by the workings of the algorithm, and since \(y < z \) by the inductive assumption, \(x < z \) also. In summary, \(w < x < z \), so the new subsequence \(L \) remains sorted.

Note that \(L \) itself need not be (and generally will not be) an increasing subsequence of \(P \). Although \(x < z \), \(x \) appears to the right of \(z \) in \(P \). Despite this, the fact that \(L \) is in sorted order means that we can use binary search to implement each iteration of the algorithm building the greedy cover. Each iteration \(k \) considers the \(k \)th number \(x \) in \(P \) and the current list \(L \) to find the left-most number in \(L \) larger than \(x \). Since \(L \) is in sorted order, this can be done in \(O(n \log n) \) time by binary search. The list \(P \) has \(n \) numbers, so we have

Theorem 12.5.5. The greedy cover can be constructed in \(O(n \log n) \) time. A longest increasing subsequence and a smallest cover of \(P \) can therefore be found in \(O(n \log n) \) time.

In fact, if \(p \) is the length of the \(l \)is, then it can be found in \(O(n \log p) \) time.

12.5.2. Longest common subsequence reduces to longest increasing subsequence

We will now solve the longest common subsequence problem for a pair of strings, using the method for finding a longest increasing subsequence in a list of integers.

Definition. Given strings \(S_1 \) and \(S_2 \) (of length \(m \) and \(n \), respectively) over an alphabet \(\Sigma \), let \(r(i) \) be the number of times that the \(i \)th character of string \(S_1 \) appears in string \(S_2 \).

Definition. Let \(r \) denote the sum \(\sum_{i=1}^{n} r(i) \).

For example, suppose we are using the normal English alphabet; when \(S_1 = abacx \) and \(S_2 = baabca \) then \(r(1) = 3, r(2) = 2, r(3) = 1, r(4) = 1 \), and \(r(5) = 0 \), so \(r = 9 \). Clearly, for any two strings, \(r \) will fall in the range \(0 \) to \(mn \). We will solve the lcs problem in \(O(r \log n) \) time (where \(n \leq m \)), which is inferior to \(O(nm) \) when the \(r \) is large. However, \(r \) is often substantially smaller than \(nm \), depending on the alphabet \(\Sigma \). We will discuss this more fully later.

The reduction

For each alphabet character \(x \) that occurs at least once in \(S_1 \), create a list of the positions where character \(x \) occurs in string \(S_2 \); write this list in decreasing order. Two distinct alphabet characters will have totally disjoint lists. In the above example, \(S_1 = abacx \) and \(S_2 = baabca \) the list for character \(a \) is \(6, 3, 2 \) and the list for \(b \) is \(4, 1 \).

Now create a list called \(\Gamma(S_1, S_2) \) of length \(r \), in which each character instance in \(S_1 \) is replaced with the associated list for that character. That is, for each position \(i \) in \(S_1 \), insert the list associated with the character \(S_1(i) \). For example, list \(\Gamma(S_1, S_2) \) for the above two strings is \(6, 3, 2, 4, 1, 6, 3, 2, 5 \).

To understand the importance of \(\Gamma(S_1, S_2) \), we examine what an increasing subsequence in that list means in terms of the original strings.

Theorem 12.5.6. Every increasing subsequence \(I \) in \(\Gamma(S_1, S_2) \) specifies an equal length common subsequence of \(S_1 \) and \(S_2 \) and vice versa. Thus a longest common subsequence of \(S_1 \) and \(S_2 \) corresponds to a longest increasing subsequence in the list \(\Gamma(S_1, S_2) \).

Proof. First, given an increasing subsequence \(I \) of \(\Gamma(S_1, S_2) \), we can create a string \(S \) and show that \(S \) is a subsequence of both \(S_1 \) and \(S_2 \). String \(S \) is successively built up during a left-to-right scan of \(I \). During this scan, also construct two lists of indices specifying a subsequence of \(S_1 \) and a subsequence of \(S_2 \). In detail, if number \(j \) is encountered in \(I \) during the scan, and number \(j \) is contained in the sublist contributed by character \(i \) of \(S_1 \), then add character \(S_1(i) \) to the right end of \(S \), add number \(i \) to the right end of the first index list, and add \(j \) to the right end of the other index list.

For example, consider \(I = 3, 4, 5 \) in the running example. The number 3 comes from the sublist for character 1 of \(S_1 \), the number 4 comes from the sublist for character 2, and the number 5 comes from the sublist for character 4. So the string \(S \) is abc. That string is a subsequence of \(S_1 \) found in positions 1, 2, 4 and is a subsequence of \(S_2 \) found in positions 3, 4, 5.

The list \(\Gamma(S_1, S_2) \) contains one sublist for every position in \(S_1 \), and each such sublist in \(\Gamma(S_1, S_2) \) is in decreasing order. So at most one number from any sublist is in \(I \) and any position in \(S_1 \) contributes at most one character to \(S \). Further, the \(m \) lists are arranged left to right corresponding to the order of the characters in \(S_1 \), so \(S \) is certainly a subsequence of \(S_1 \). The numbers in \(I \) strictly increase and correspond to positions in \(S_2 \), so \(S \) is also a subsequence of \(S_2 \).

In summary, we have proven that every increasing subsequence in \(\Gamma(S_1, S_2) \) can be used to create an equal length common subsequence in \(S_1 \) and \(S_2 \). The converse argument, that a common subsequence yields an increasing subsequence, is very similar and is left as an exercise.

Theorem 12.5.7. The longest common subsequence problem can be solved in \(O(r \log n) \) time.

The \(O(r \log n) \) result for lcs was first obtained by Hunt and Szymanski [238]. Their algorithm is superficially very different than the one above, but in retrospect one can see similar ideas embodied in it. The relationship between the lcs and lls problems was partly identified by Apostolico and Guerra [25, 27] and made explicit by Jacobson and Vo [244] and independently by Pevzner and Waterman [370].

The lcs method based on lls is an example of what is called sparse dynamic programming, where the input is a relatively sparse set of pairs that are permitted to align. This approach, and in fact the solution technique discussed here, has been very extensively generalized by a number of people and appears in detail in [137] and [138].
12.5.3. How good is the method

How good is the lcs method based on the lis compared to the original \(\Theta(nm) \)-time dynamic programming approach? It depends on the size of \(r \). Let \(\sigma \) denote the size of the alphabet \(\Sigma \). A very naive analysis would say that \(r \) can be expected to be about \(nm / \sigma \). This assumes that each character in \(\Sigma \) appears with equal probability and hence is expected to appear \(n / \sigma \) times in the short string. That means that \(r_i = n / \sigma \) for each \(i \). The long string has length \(m \), so \(r \) is expected to be \(nm / \sigma \). But of course, equal distribution of characters is not really typical, and the value of \(r \) is then highly dependent on the specific strings.

For the Roman alphabet with capital letters, digits, and punctuation marks added, \(\sigma \) is around 100, but the assumption of equal distribution is clearly flawed. Still, one can ask whether \((nm/100) \log n \) looks attractive compared to \(nm \). For such alphabets, the speedup doesn't look so compelling, although the method retains its simplicity and space efficiency. Thus for typical English text, the lis-based approach may not be much superior to the dynamic programming approach. However, in many applications, the "alphabet" size is quite large and grows with the size of the text.\footnote{This is one of the few places in the book where we deviate from the standard assumption that the alphabet is fixed.} This is true, for example, in the unix utility \texttt{diff} where each line in the text is considered as a character in the "alphabet" used for the \textit{lcs} computation. In certain applications in molecular biology the alphabet consists of patterns or substrings, rather than the four-character alphabet of DNA or the twenty-character alphabet of protein. These substrings might be genes, exons, or restriction enzyme recognition sequences. In those cases, the alphabet size is large compared to the string size, so \(r \) is small and \(r \log n \) is quite attractive compared to \(nm \).

Constrained \textit{lcs}

The \textit{lcs} method based on \textit{lis} has another advantage over the standard dynamic programming approach. In some applications there are additional constraints imposed on which pairs of positions are permitted to align in the \textit{lcs}. That is, in addition to the constraint that position \(i \) in \(S_1 \) can align with position \(j \) in \(S_2 \) only if \(S_1(i) = S_2(j) \), some additional constraints may apply. The reduction of \textit{lcs} to \textit{lis} can be easily modified to incorporate these additional constraints, and we leave the details to the reader. The effect is to reduce the size of \(r \) and consequently to speed up the entire \textit{lcs} computation. This is another example and variant of sparse dynamic programming.

12.5.4. The \textit{lcs} of more than two strings

One of the nice features of the \textit{lcs} method based on \textit{lis} is that it easily generalizes to the \textit{lcs} problem for more than two strings. That problem is a special case of \textit{multiple sequence alignment}, a crucial problem in computational molecular biology that we will more fully discuss in Chapter 14. The generalization from two to many strings will be presented here for three strings, \(S_1 \), \(S_2 \), and \(S_3 \).

The idea is to again reduce the \textit{lcs} problem to the \textit{lis} problem. As before, we start by creating a list for each character \(x \) in \(S_1 \). In particular, the list for \(x \) will contain pairs of integers, each pair containing a position in \(S_2 \) where \(x \) occurs and a position in \(S_3 \) where \(x \) occurs. Further, the list for character \(x \) will be ordered so that the pairs in the list are in \textit{lexicographically decreasing} order: That is, if pair \((i, j)\) appears before pair \((i', j')\) in the list for \(x \), then either \(i' > i \) or \(i = i' \) and \(j > j' \). For example, if \(S_1 = abax \) and \(S_2 = baabax \) (as above) and \(S_3 = baabbc \), then the list for character \(a \) is \((6, 5), (6, 2), (3, 5), (3, 3), (2, 5), (2, 2)\).

The lists for each character are again concatenated in the order that the characters appear in string \(S_1 \), forming the sequence of pairs \(\Pi(S_1, S_2, S_3) \). We define an increasing subsequence in \(\Pi(S_1, S_2, S_3) \) to be a subsequence of pairs such that the first numbers in each pair form an increasing subsequence of integers, and the second numbers in each pair also form an increasing subsequence of integers. We can easily modify the greedy cover algorithm to find a longest increasing subsequence of pairs under this definition. This increasing subsequence is used as follows.

\textbf{Theorem 12.5.4}. Every increasing subsequence in \(\Pi(S_1, S_2, S_3) \) specifies an equal length common subsequence of \(S_1, S_2, S_3 \) and vice versa. Therefore, a longest common subsequence of \(S_1, S_2, S_3 \) corresponds to a longest increasing subsequence in \(\Pi(S_1, S_2, S_3) \).

The proof of this theorem is similar to the case of two strings and is left as an exercise. Adaptation of the greedy cover algorithm and its time analysis for the case of three strings is also left to the reader. Extension to more than three strings is immediate. The combinatorial approach to computing \textit{lcs} also has a nice space-efficiency feature that we will explore in the exercises.

12.6. Convex gap weights

Overwhelmingly, the affine gap weight model is the model most commonly used by molecular biologists today. This is particularly true for aligning amino acid sequences. However, a richer gap model, the \textit{convex} gap weight, was proposed and studied by Waterman in 1984 [466], and has been more extensively examined since then. In discussing the common use of the affine gap weight, Benner, Cohen and Gomnet state "There is no justification either theoretical or empirical for this treatment" [183] and forcefully argue that "a non-linear gap penalty is the only one that is grounded in empirical data" [57]. They propose [57] that to align two protein sequences that are of \(PAM \) units diverged (see Section 15.7.2), a gap of length \(q \) should be given the weight:

\[
35.03 - 6.88 \log_{10} d + 17.02 \log_{10} q
\]

Under this weighting model, the cost to initiate a gap is at most 35.03, and declines with increasing evolutionary (PAM) distance between the two sequences. In addition to this initiation weight, the function adds \(17.02 \log_{10} q \) for the actual length, \(q \), of the gap.

It is hard to believe that a function this precise could be correct, but the key point is that, for a fixed PAM distance, the proposed gap weight is a \textit{convex} function of its length.\footnote{Unfortunately, there is no standard agreement on terminology, and some of the papers refer to the model as the "convex" gap weight model, while others call it the "concave" gap model. In this book, a convex function is one with a negative or zero second derivative, and a concave function is one with a positive second derivative.}

The alignment problem with convex gap weights is more difficult to solve than with affine gap weights, but it is not as difficult as the problem with arbitrary gap weights. In this section we develop a practical algorithm to optimally align two strings of lengths \(n \) and \(m > n \), when the gap weights are specified by a \textit{convex} function of the gap length.

The algorithm runs in \(O(nm \log m) \) time, in contrast to the \(O(n^2m^2) \)-time bound for affine gap weights and the \(O(n^3m^3) \) time for arbitrary gap weights. The speedup for the convex case was established by Miller and Myers [322] and independently by Galil and Giancarlo.
those recurrences. For convenience, we restate the general recurrences for arbitrary gap weights.

\[V(i, j) = \max\{E(i, j), F(i, j), G(i, j)\}, \]

\[G(i, j) = V(i-1, j-1) + s_1(S_1(i), S_2(j)). \]

\[E(i, j) = \max_{0 \leq k < j} \{ V(i, k) - w(j-k) \}, \]

\[F(i, j) = \max_{0 \leq k < i} \{ V(i, j) - w(i-k) \}. \]

\[V(0, 0) = -w(0), \]

\[V(0, j) = -w(j), \]

\[E(0, 0) = -w(0), \]

\[F(0, j) = -w(j). \]

\[G(i, j) \text{ is undefined when } i \text{ or } j \text{ is zero.} \]

Even with arbitrary gap weights, the work required by the first and second recurrences is \(O(m) \) per row, which is within our desired time bound. It is the recurrences for \(E(i, j) \) and \(F(i, j) \) that respectively require \(\Theta(m^2) \) time per row and \(\Theta(n^2) \) time per column when the function \(w \) is arbitrary. Hence, it is the evaluation of \(E \) and \(F \) for any given row or column that will be improved in the case where \(w \) is convex. We will focus on the computation of \(E \) for a single row. The computation of \(F \) and the associated time analysis for a single column is symmetric, with one caveat to be discussed later.

Simplifying notation

The value \(E(i, j) \) depends on \(i \) only through the values \(V(i, k) \) for \(k < i \). Hence, in any fixed row, we can drop the reference to the row index \(i \), simplifying the recurrence for \(E \). That is, in any fixed row we define

\[E(j) = \max_{0 \leq k < j-1} \{ V(k) - w(j-k) \}. \]

Further, we introduce the following notation to simplify the recurrence:

\[\text{Cand}(k, j) = V(k) - w(j-k); \]

therefore,

\[E(j) = \max_{0 \leq k < j} \text{Cand}(k, j). \]

The term \(\text{Cand} \) stands for “candidate”; the meaning of this will become clear later.

12.6.1. Forward dynamic programming

It will be useful in the exposition to change the way we normally implement dynamic programming. Normally when setting the value \(E(j) \), we would look backwards in the row to compare all the \(\text{Cand}(k, j) \) values for \(k < j \), taking the largest one to be the value \(E(j) \). But an alternative forward-looking implementation is also possible and is more helpful in this exposition.\(^8\)

\(^8\) Gene Lawler pointed out that in some circles forward and backward implementations are referred to as “push row - pull me” dynamic programming. The reader may determine which term denotes forwards and which denotes backwards.
In the forward implementation, we first initialize a variable $E(j')$ to $\text{Cand}(0, j')$ for each cell $j' > 0$ in the row. The E values are set left to right in the row, as in backward dynamic programming. However, to set the value of $E(j')$ (for any $j' > 0$) the algorithm merely sets $E(j)$ to the current value of $E(j')$, since every cell to the left of j' will have contributed a candidate value to cell j. Then, before setting the value of $E(j + 1)$, the algorithm traverses forwards in the row to set $E(j')$ (for each $j' > j$) to be the maximum of the current $E(j')$ and $\text{Cand}(j, j')$. To summarize, the forward implementation for a fixed row is:

Forward dynamic programming for a fixed row

For $j := 1$ to m
begin
$E(j) := \text{Cand}(0, j)$;
$b(j) := 0$
end;

For $j := 1$ to m
begin
$E(j) := E(j)$;
$V(j) := \max\{G(j), E(j), F(j)\}$;
(We assume, but do not show that $F(j)$ and $G(j)$ have been computed for cell j in the row.)

For $j' := j + 1$ to m [Loop 1]
if $E(j') < \text{Cand}(j, j')$ then
begin
$E(j') := \text{Cand}(j, j')$;
$b(j') := j$; [This sets a pointer from j' to j to be explained later.]
end;
end;

An alternative way to think about forward dynamic programming is to consider the weighted edit graph for the alignment problem (see Section 11.4). In that (acyclic) graph, the optimal path (shortest or longest distance, depending on the type of alignment being computed) from cell $(0, 0)$ to cell (n, m) specifies an optimal alignment. Hence algorithms that compute optimal distances in (acyclic) graphs can be used to compute optimal alignments, and distance algorithms (such as Dijkstra’s algorithm for shortest distance) can be described as forward looking. When the correct distance $d(u)$ to a node u has been computed, and there is an edge from u to a node w whose correct distance is still unknown, the algorithm adds $d(u)$ to the distance on the edge (u, w) to obtain a candidate value for the correct distance to w. When the correct distances have been computed to all nodes with a direct edge to w, and each has contributed a candidate value for w, the correct distance to w is the best of those candidate values.

It should be clear that exactly the same arithmetic operations and comparisons are done in both backward and forward dynamic programming – the only difference is the order in which the operations take place. It follows that the forward algorithm correctly sets all the E values for a fixed row and still requires $O(m^2)$ time per row. Thus forward dynamic programming is no faster than backwards dynamic programming, but the concept will help explain the speedup to come.

Figure 12.17: Graphical illustration of the key observation. Winning candidates are shown with a solid curve and losers with a dashed curve. If the candidate from j' loses to the candidate from k at cell j', then the candidate from j will lose to the candidate from k at every cell j'' to the right of j'.

12.6.2. The basis of the speedup

At the point when $E(j)$ is set, call cell j the current cell. We interpret $\text{Cand}(j, j')$ as the "candidate value" for $E(j')$ that cell j "sends forward" to cell j'. When j is the current cell, it "sends forward" $m - j$ candidate values, one to each cell $j' > j$. Each such $\text{Cand}(j, j')$ value is compared to the current $E(j')$; it either wins (when $\text{Cand}(j, j')$ is greater than $E(j')$) or loses the comparison. The speedup works by identifying and eliminating large numbers of candidate values that have no chance of winning any comparison. In this way, the algorithm avoids a large number of useless comparisons. This approach is sometimes called a candidate list approach. The following is the key observation used to identify "loser" candidates:

Key observation Let j be the current cell. If $\text{Cand}(j, j') \leq E(j')$ for some $j' > j$, then $\text{Cand}(j, j') \leq E(j''')$ for every $j'' > j'$. That is, "one strike and you’re out".

Hence the current cell j need not send forward any candidate values to the right of the first cell $j' > j$ where $\text{Cand}(j', j)$ is less than or equal to $E(j')$. This suggests the obvious practical speedup of stopping the loop labeled [Loop 1] in the Forward dynamic programming algorithm as soon as j'’s candidate loses. But this improvement does not need to lead directly to a better (worst-case) time bound. For that, we will have to use one more trick. But first, we prove the key observation with the following more precise lemma.

Lemma 12.6.1. Let $k < j < j' < j''$ be any four cells in the same row. If $\text{Cand}(k, j') \leq \text{Cand}(k, j'')$ then $\text{Cand}(j, j') \leq \text{Cand}(k, j'')$. See Figure 12.17 for reference.

Proof $\text{Cand}(k, j') \geq \text{Cand}(j, j')$ implies that $V(k) - w(j' - k) \geq V(j) - w(j' - j)$, so $V(k) - V(j) \geq w(j' - k) - w(j' - j)$.

Trivially, $(j' - k) = (j' - j) + (j' - k)$. Similarly, $(j'' - k) = (j'' - j) + (j' - k)$. For future use, note that $(j' - k) < (j'' - k)$.

Now let q denote $(j' - j)$, let q' denote $(j'' - j)$, and let k denote $(j' - k)$. Since $j' < j''$, then $q < q'$. By convexity, $w(q + d) - w(q) \geq w(q' + d) - w(q')$ (see Figure 12.16). Translating back, we have $w(j' - j) - w(j' - k) \geq w(j'' - k) - w(j' - j)$ Combining this with the result in the first paragraph gives $V(k) - V(j) \geq (j'' - k) - (j' - j)$, and rewriting gives $V(k) - w(j'' - k) \geq V(j) - w(j' - j)$, i.e., $\text{Cand}(k, j'') \geq \text{Cand}(j, j'')$, as claimed.

Lemma 12.6.1 immediately implies the key observation.

12.6.3. Cell pointers and row partition

Recall from the details of the forward dynamic programming algorithm that the algorithm maintains a variable $b(j')$ for each cell j'. This variable is a pointer to the leftmost cell
Figure 12.18: Partition the cells $j+1$ through m into maximal blocks of consecutive cells such that all the cells in any block have the same value. The common block value in any block is less than the common block value in the preceding block.

$k < j'$ that has contributed the best candidate yet seen for cell j'. Pointer $b(j')$ is updated every time the value of $E(j')$ changes. The use of these pointers combined with the next lemma leads ultimately to the desired speedup.

Lemma 12.6.2. Consider the point when j is the current cell, but before j sends forward any candidate values. At that point, $b(j') \geq b(j'+1)$ for every cell j' from $j+1$ to $m-1$.

Proof.
For notational simplicity, let $b(j') = k$ and $b(j'+1) = k'$. Then, by the selection of k, $\text{Cand}(k, j') \geq \text{Cand}(k', j')$. Now suppose $k < k'$. Then, by Lemma 12.6.1, $\text{Cand}(k, j'+1) \geq \text{Cand}(k', j'+1)$, in which case $b(j'+1)$ should be set to k, not k'. Hence $k \geq k'$ and the lemma is proved. □

The following corollary restates Lemma 12.6.2 in a more useful way.

Corollary 12.6.1. At the point that j is the current cell but before j sends forward any candidates, the values of the b pointers form a nonincreasing sequence from left to right. Therefore, cells $j, j+1, j+2, \ldots, m$ are partitioned into maximal blocks of consecutive cells such that all b pointers in the block have the same value, and the pointer values decline in successive blocks.

Definition. The partition of cells j through m referred to in Corollary 12.6.1 is called the current block-partition. See Figure 12.18.

Given Corollary 12.6.1, the algorithm doesn’t need to explicitly maintain a b pointer for every cell but only record the common b pointer for each block. This fact will next be exploited to achieve the desired speedup.

Preparation for the speedup.

Our goal is to reduce the time per row used in computing the E values from $O(m^2)$ to $O(m \log m)$. The main work done in a row is to update the E values and to update the current block-partition with its associated pointers. We first focus on updating the block-partition and the b pointers; after that, the treatment of the E values will be easy. So far, now assume that all the E values are maintained for free.

Consider the point where j is the current cell, but before it sends forward any candidate values. After $E(j)$ (and $F(j)$ and then $V(j)$) have been computed, the algorithm must update the block-partition and the needed b pointers. To see the new idea, take the case of $j = 1$. At this point, there is only one block (containing cells 1 through m), with common b pointer set to cell zero (i.e., $b(j') = 0$ for each cell j' in the block). After $E(1)$ is set to $\bar{E}(1) = \text{Cand}(0, 1)$, any $E(j')$ that then changes will cause the block-partition to change as well. In particular, if $\bar{E}(j')$ changes, then $b(j')$ changes from zero to one. But since the b values in the new block-partition must be nonincreasing from left to right, there are only three possibilities for the new block-partition:

- Cells 2 through m might remain in a single block with common pointer $b = 0$. By Lemma 12.6.1, this happens if and only if $\text{Cand}(1, 2) \leq \bar{E}(2)$.

9 The \bar{E} values in these three cases are the values before any E changes.

- Cells 2 through m might get divided into two blocks, where the common pointer for the first block is $b = 1$, and the common pointer for the second is $b = 0$. This happens (again by Lemma 12.6.1) if and only if for some $k < m$, $\text{Cand}(1, j') > \bar{E}(j')$ for j' from 2 to k and $\text{Cand}(k, j') \leq \bar{E}(j')$ for j' from $k + 1$ to m.

- Cells 2 through m might remain in a single block, but now the common pointer b is set to 1. This happens if and only if $\text{Cand}(1, j') = \bar{E}(j')$ for j' from 2 to m.

Figure 12.19: The three possible ways that the block partition changes after $E(1)$ is set. The curves with arrows represent the common pointer for the block and leave the last entry in the block.

- Cells 2 through m might get divided into two blocks, where the common pointer for the first block is $b = 1$, and the common pointer for the second is $b = 0$. This happens (again by Lemma 12.6.1) if and only if for some $k < m$, $\text{Cand}(1, j') > \bar{E}(j')$ for j' from 2 to k and $\text{Cand}(k, j') \leq \bar{E}(j')$ for j' from $k + 1$ to m.

- Cells 2 through m might remain in a single block, but now the common pointer b is set to 1. This happens if and only if $\text{Cand}(1, j') = \bar{E}(j')$ for j' from 2 to m.

Figure 12.19 illustrates the three possibilities.

Therefore, before making any changes to the E values, the new partition of the cells from 2 to m can be efficiently computed as follows: The algorithm first compares $\bar{E}(2)$ and $\text{Cand}(1, 2)$. If $\bar{E}(2) \geq \text{Cand}(1, 2)$ then all the cells to the right of 2 remain in a single block with common b pointer set to zero. However, if $\bar{E}(2) < \text{Cand}(1, 2)$ then the algorithm searches for the leftmost cell $j' > 2$ such that $\bar{E}(j') \geq \text{Cand}(1, j')$. If j' is found, then cells 2 through $j' - 1$ form a new block with common pointer to cell one, and the remaining cells form another block with common pointer to cell zero. If no j' is found, then all cells 2 through m remain in a single block, but the common pointer is changed to one.

Now for the punch line: By Corollary 12.6.1, this search for j' can be done by binary search. Hence only $O(\log m)$ comparisons are used in searching for j'. And, since we only record one b pointer per block, at most one pointer update is needed.

Now consider the general case of $j > 1$. Suppose that $E(j)$ has just been set and that the cells $j + 1, \ldots, m$ are presently partitioned into r maximal blocks ending at cells $p_1 < p_2 < \cdots < p_r = m$. The block ending at p_i will be called the ith block. We use b_i to denote the common pointer for cells in block i. We assume that the algorithm has a list of the end-of-block positions $p_1 < p_2 < \cdots < p_r$ and a parallel list of common pointers $b_1 > b_2 > \cdots > b_r$.

After $E(j)$ is set, the new partition of cells $j + 1$ through m is found in the following way: First, if $\bar{E}(j + 1) \geq \text{Cand}(j, j + 1)$ then, by Lemma 12.6.1, $\bar{E}(j') \geq \text{Cand}(j, j')$ for all $j' > j$, so the partition of cells greater than j remains unchanged. Otherwise (if $\bar{E}(j + 1) < \text{Cand}(j, j + 1)$), the algorithm successively compares $\bar{E}(p_i)$ to $\text{Cand}(j, p_i)$
Figure 12.20: To update the block-partition the algorithm successively examines cell \(p \), to find the first index \(s \) where \(E(p_s) \geq \text{Cand}(j, p_s) \). In this figure, \(s = 4 \). Blocks 1 through \(s - 1 = 3 \) coalesce into a single block with some initial part of block \(s = 4 \). Blocks to the right of \(s \) remain unchanged.

for \(i \) from 1 to \(r \), until either the end-of-block list is exhausted, or until it finds the first index \(s \) with \(E(p_s) \geq \text{Cand}(j, p_s) \). In the first case, the cells \(j + 1, \ldots, m \) fall into a single block with common pointer to cell \(j \). In the second case, the blocks \(s + 1 \) through \(r \) remain unchanged, but all the blocks 1 through \(s - 1 \) coalesce with some initial part (possibly all) of block \(s \), forming one block with common pointer to cell \(j \) (see Figure 12.20). Note that every comparison but the last one results in two neighboring blocks coalescing into one.

Having found block \(s \), the algorithm finds the proper place to split block \(s \) by doing binary search over the cells in the block. This is exactly as in the case already discussed for \(j = 1 \).

12.6.4. Final implementation details and time analysis

We have described above how to update the block-partition and the common \(b \) pointers, but that exposition uses \(E \) values that we assumed could be maintained for free. We now deal with that problem.

The key observation is that the algorithm retrieves \(E(j) \) only when \(j \) is the current cell and retrieves \(E(j') \) only when examining cell \(j' \) in the process of updating the block-partition. But the current cell \(j \) is always in the first block of the current block-partition (whose endpoint is denoted \(p_1 \)), so \(b(j) = b_1 \), and \(E(j) = \text{Cand}(b_1, j) \), which can be computed in constant time when needed. In addition, when examining a cell \(j' \) in the process of updating the block-partition, the algorithm knows the block that \(j' \) falls into, say block \(i \), and hence it knows \(b_i \). Therefore, it can compute \(E(j') \) in constant time by computing \(\text{Cand}(b_i, j') \). The result is that no explicit \(E \) values ever need to be stored. They are simply computed when needed, in a sense, they are only an expositional device. Moreover, the number of \(E \) values that need to be computed on the fly is proportional to the number of comparisons that the algorithm does to maintain the block-partition. These observations are summarized in the following:

Revised forward dynamic programming for a fixed row

Initialize the end-of-block list to contain the single number \(m \).
Initialize the associated pointer list to contain the single number 0.

For \(j = 1 \) to \(m \) do

\[
\text{end of block positions} \\
\begin{array}{ccccccc}
\hat{p}_1 & \hat{p}_2 & \hat{p}_3 & \hat{p}_4 & \hat{p}_5 & \hat{p}_6 \\
\end{array}
\]

\(j + 1 \) \hspace{1cm} \text{coalesced block} \hspace{1cm} m

\[
V(j) := \max\{G(j), E(j), F(j)\}; \\
\text{(As before we assume that the needed } F \text{ and } G \text{ values have been computed.)}
\]

[Now see how \(j \)'s candidates change the block-partition.]

Set \(j' \) equal to the first entry on the end-of-block list.

[look for the first index \(s \) in the end-of-block list where \(j \) loses]

If \(\text{Cand}(b(j'), j + 1) < \text{Cand}(j, j + 1) \) then \(j' \)'s candidate wins one.

\[
\text{V(j)} := \max\{G(j), E(j), F(j)\}; \\
\text{(As before we assume that the needed } F \text{ and } G \text{ values have been computed.)}
\]

While \(\text{the end-of-block list is not empty and } \text{Cand}(b(j'), j') < \text{Cand}(j, j') \) do

remove the first entry on the end-of-block list,

and remove the corresponding \(b \)-pointer.

If the end-of-block list is not empty then

set \(j' \) to the new first entry on the end-of-block list.

end;

end [while];

If the end-of-block list is empty then

place \(m \) at the head of that list;

Else [when the end-of-block list is not empty]

begin

Let \(p_s \) denote the first end-of-block entry.

Using binary search over the cells in block \(s \), find the right-most point \(p \) in that block such that \(\text{Cand}(j, p) < \text{Cand}(b_s, p) \).

Add \(p \) to the head of the end-of-block list;

end;

Add \(j \) to the head of the \(b \) pointer list.

end;

Time analysis

An \(E \) value is computed for the current cell, or when the algorithm does a comparison involved in maintaining the current block-partition. Hence the total time for the algorithm is proportional to the number of those comparisons. In iteration \(j \), when \(j \) is the current cell, the comparisons are divided into those used to find block \(s \) and those used in the binary search to split block \(s \). If the algorithm does \(l > 2 \) comparisons to find \(s \) in iteration \(j \), then at least \(l - 1 \) full blocks coalesce into a single block. The binary search then splits at most one block into two. Hence if, in iteration \(j \), the algorithm does \(l > 2 \) comparisons to find \(s \), then the total number of blocks decreases by at least \(l - 2 \). If it does one or two comparisons, then the total number of blocks at most increases by one. Since the algorithm begins with a single block and there are \(m \) iterations, it follows that over the entire algorithm there can be at most \(O(m) \) comparisons done to find every \(s \), excluding the comparisons done during the binary searches. Clearly, the total number of comparisons used in the \(m \) binary searches is \(O(m \log m) \). Hence we have

Theorem 12.6.1. For any fixed row, all the \(E(j) \) values can be computed in \(O(m \log m) \) total time.
The case of F values is essentially symmetric

A similar algorithm and analysis is used to compute the F values, except that for F(i, j)
the lists partition column j from cell i through n. There is, however, one point that might
cause confusion: although the analysis for F focuses on the work in a single column
and is symmetric to the analysis for E in a single row, the computations of E and F are
actually interleaved since, by the recurrences, each V(i, j) value depends on both E(i, j)
and F(i, j). Even though both the E values and the F values are computed rowwise (since
V is computed rowwise), one row after another, E(i, j) is computed just prior to the
computation of E(i, j + 1), while between the computation of F(i, j) and F(i + 1, j),
m - 1 other F values will be computed (m - j in row i and j - 1 in row i + 1). So
although the analysis treats the work in a column as if it is done in one contiguous time
interval, the algorithm actually breaks up the work in any given column.

Only O(nm) total time is needed to compute the G values and to compute every V(i, j)
one E(i, j) and F(i, j) is known. In summary we have

Theorem 12.6.2. When the gap weight w is a convex function of the gap length, an optimal
alignment can be computed in O(nm log m) time, where m > n are the lengths of the two
strings.

12.7. The Four-Russians speedup

In this section we will discuss an approach that leads both to a theoretical and to a prac-
tical speedup of many dynamic programming algorithms. The idea, comes from a paper
[28] by four authors, Aralazarov, Dinic, Kronrod, and Faradzev, concerning boolean matrix
multiplication. The general idea taken from this paper has come to be known in the
West as the Four-Russians technique, even though only one of the authors is Russian.10
The applications in the string domain are quite different from matrix multiplication, but
the general idea suggested in [28] applies. We illustrate the idea with the specific prob-
lem of computing (unweighted) edit distance. This application was first worked out by
Masek and Paterson [313] and was further discussed by those authors in [312]; many
additional applications of the Four-Russians idea have been developed since then (for
example [340]).

12.7.1. t-blocks

Definition A t-block is a t by t square in the dynamic programming table.

The rough idea of the Four-Russians method is to partition the dynamic programming
table into t-blocks and compute the essential values in the table one t-block at a time,
rather than one cell at a time. The goal is to spend only O(t) time per block (rather than
O(t^2) time), achieving a factor of t speedup over the standard dynamic programming
solution. In the exposition given below, the partition will not be exactly achieved, since
neighboring t-blocks will overlap somewhat. Still, the rough idea given here does capture
the basic flavor and advantage of the method presented below. That method will compute
the edit distance in O(n^2/\log n) time, for two strings of length n (again assuming a fixed
alphabet).

Figure 12.21: A single block with t = 4 drawn inside the full dynamic programming table. The distance
values in the part of the block labeled F are determined by the values in the parts labeled A, B, and C
together with the substrings of S1 and S2 in D and E. Note that A is the intersection of the first row and
column of the block.

Consider the standard dynamic programming approach to computing the edit distance of
two strings S1 and S2. The value D(i, j) given to any cell (i, j), when i and j are both greater
than 0, is determined by the values in its three neighboring cells, (i - 1, j + 1), (i - 1, j),
and (i, j - 1), and by the characters in positions i and j of the two strings. By extension,
the values given to the cells in an entire t-block, with upper left-hand corner at position
(i, j) say, are determined by the values in the first row and column of the t-block together
with the substrings S1[i..i + t - 1] and S2[j..j + t - 1] (see Figure 12.21). Another way
to state this observation is the following:

Lemma 12.7.1. The distance values in a t-block starting in position (i, j) are a function of
the values in its first row and column and the substrings S1[i..i + t - 1] and S2[j..j + t - 1].

Definition Given Lemma 12.7.1, and using the notation shown in Figure 12.21, we
define the block function as the function from the five inputs (A, B, C, D, E) to the
output F.

It follows that the values in the last row and column of a t-block are also a function of
the inputs (A, B, C, D, E). We call the function from those inputs to the values in the last
row and column of a t-block, the restricted block function.

Notice that the total size of the input and the size of the output of the restricted block
function is O(t).

Computing edit distance with the restricted block function

By Lemma 12.7.1, the edit distance between S1 and S2 can be computed using the restricted
block function. For simplicity, suppose that S1 and S2 are both of length n = k(t - 1), for
some k.

10 This reflects our general level of ignorance about ethnicities in the then Soviet Union.
In the case of edit distance, the precomputation suggested by the Four-Russians idea is to enumerate all possible inputs to the restricted block function (the proper size of the block will be determined later), compute the resulting output values (a r-length row and a t-length column) for each input, and store the outputs indexed by the inputs. Every time a specific restricted block function must be computed in step 3 of; the block edit distance algorithm, the value of the function is then retrieved from the precomputed values and need not be computed. This clearly works to compute the edit distance $D(n, n)$, but is it any faster than the original $O(n^2)$ method? Astute readers should be skeptical, so please suspend disbelief for now.

Accounting detail

Assume first that all the precomputation has been done. What time is needed to execute the block edit distance algorithm? Recall that the sizes of the input and the output of the restricted block function are both $O(t)$. It is not difficult to organize the input-output values of the (precomputed) restricted block function so that the correct output for any specific input can be retrieved in $O(t)$ time. Details are left to the reader. There are $O(n^2/t^2)$ blocks, hence the total time used by the block edit distance algorithm is $O(n^2/t)$. Setting $t = O(\log n)$, the time is $O(n^2/\log n)$. However, in the unit-cost RAM model of computation, each output value can be retrieved in constant time since $t = O(\log n)$. In that case, the time for the method is reduced to $O(n^2/(\log n)^2)$.

But what about the precomputation time? The key issue involves the number of input choices to the restricted block function. By definition, every cell has an integer from zero to n, so there are $(n + 1)^t$ possible values for any t-length row or column. If the alphabet has size σ, then there are σ^t possible substrings of length t. Hence the number of distinct input combinations to the restricted block function is $(n + 1)^t\sigma^t$. For each input, it takes $O(t^2)$ time to evaluate the last row and column of the resulting t-block (by running the standard dynamic program). Thus the overall time used in this way to precompute the function outputs to all possible input choices is $O((n + 1)^t\sigma^t t^2)$. But t must be at least one, so $\Omega(n^2)$ time is used in this way. No progress yet! The idea is right, but we need another trick to make it work.

12.7.3. The trick: offset encoding

The dominant term in the precomputation time is $(n + 1)^2$, since σ is assumed to be fixed. That term comes from the number of distinct choices there are for two t-length subrows and subcolumns. But $(n + 1)^t$ overcounts the number of different t-length subrows (or subcolumns) that could appear in a real table, since the value in a cell is not independent of the values of its neighbors. We next make this precise.

Lemma 12.7.2. In any row, column, or diagonal of the dynamic programming table for edit distance, two adjacent cells can have a value that differs by at most one.

Proof. Certainly, $D(i, j) \leq D(i, j - 1) + 1$. Conversely, if the optimal alignment of $S[1..i]$ and $S[1..j]$ matches $S[i]$ to some character of S_i, then by simply omitting $S[i]$ and aligning its mate against a space, the distance increases by at most one. If $S[i]$ is not matched then its omission reduces the distance by one. Hence $D(i, j - 1) \geq D(i, j) - 1$, and the lemma is proved for adjacent row cells. Similar reasoning holds along a column.

In the case of adjacent cells in a diagonal, it is easy to see that $D(i, j) \leq D(i - 1, j - 1) + 1$. Conversely, if the optimal alignment of $S[1..i]$ and $S[1..j]$ aligns i against j.

Figure 12.22: An edit distance table for $n = 9$. With $t = 4$, the table is covered by nine overlapping blocks. The center block is outlined with darker lines for clarity. In general, if $n = k(t - 1)$ then the $(n + 1)$ by $(n + 1)$ table will be covered by k^2 overlapping t-blocks.
then \(D(i-1, j-1) \leq D(i, j) + 1 \). If the optimal alignment doesn’t align \(i \) against \(j \), then at least one of the characters, \(S(i) \) or \(S(j) \), must align against a space, and \(D(i-1, j-1) \leq D(i, j) \).

Given Lemma 12.7.2, we can encode the values in a row of a \(t \)-block by a \(t \)-length vector specifying the value of the first entry in the row, and then specifying the difference (offset) of each successive cell value to its left neighbor. A zero indicates equality, a one indicates an increase by one, and a minus one indicates a decrease by one. For example, the row of distances 5, 4, 4, 5 would be encoded by the row of offsets 5, -1, 0, 1. Similarly, we can encode the values in any column by such offset encoding. Since there are only \((n+1)^{3t-1}\) distinct vectors of this type, a change to offset encoding is surely a move in the right direction. We can, however, reduce the number of possible vectors even further.

Definition The offset vector is a \(t \)-length vector of values from \([-1, 0, 1]\), where the first entry must be zero.

The key to making the Four-Russians method efficient is to compute edit distance using only offset vectors rather than actual distance values. Because the number of possible offset vectors is much less than the number of possible vectors of distance values, much less precomputation will be needed. We next show that edit distance can be computed using offset vectors.

Theorem 12.7.1. Consider a \(t \)-block with upper left corner in position \((i, j)\). The two offset vectors for the last row and last column of the block can be determined from the two offset vectors for the first row and column of the block and from substrings \(S[1...i] \) and \(S[1...j] \). That is, no \(D \) value is needed in the input in order to determine the offset vectors in the last row and column of the block.

Proof The proof is essentially a close examination of the dynamic programming recurrences for edit distance. Denote the unknown value of \(D(i, j) \) by \(C \). Then for column \(q \) in the block, \(D(i, q) \) equals \(C \) plus the total of the offset values in row \(i \) from column \(j+1 \) to column \(q \). Hence even if the algorithm doesn’t know the value of \(C \), it can express \(D(i, q) \) as \(C \) plus an integer that it can determine. Each \(D(q, j) \) can similarly be expressed. Let \(D(i, j+1) = C + J \) and let \(D(i + 1, j) = C + I \), where the algorithm can know \(I \) and \(J \). Now consider cell \((i + 1, j + 1)\). \(D(i + 1, j + 1) \) is equal to \(D(i, j) \) if character \(S(i) \) matches \(S(j) \). Otherwise \(D(i + 1, j + 1) \) equals the minimum of \(D(i, j + 1) + 1, D(i + 1, j) + 1, \) and \(D(i, j + 1) + 1 \), i.e., the minimum of \(C + I + 1 \), \(C + J + 1 \), and \(C + I + J + 1 \). The algorithm can make this comparison by comparing \(I \) and \(J \) (which it knows) to the number zero. So the algorithm can correctly express \(D(i + 1, j + 1) \) as \(C, C + I, C + J, \) or \(C + 1 \). Continuing in this way, the algorithm can correctly express each \(D \) value in the block as an unknown \(C \) plus some integer that it can determine. Since every entry involves the same unknown constant \(C \), the offset vectors can be correctly determined by the algorithm.

Definition The function that determines the two offset vectors for the last row and last column from the two offset vectors for the first row and column of a block together with substrings \(S[1...i] \) and \(S[1...j] \) is called the offset function.

We now have all the pieces of the Four-Russians--type algorithm to compute edit distance. We again assume, for simplicity, that each string has length \(n = k(t-1) \) for some \(k \).

12.7. The Four-Russians Speedup

Four-Russians edit distance algorithm

1. Cover the \(n \) by \(n \) dynamic programming table with \(t \)-blocks, where the last column of every \(t \)-block is shared with the first column of the \(t \)-block to its right (if any), and the last row of every \(t \)-block is shared with the first row of the \(t \)-block below it (if any).
2. Initialize the values in the first row and column of the full table according to the base conditions of the recurrence. Compute the offset values in the first row and column.
3. In a rowwise manner, use the offset block function to successively determine the offset vectors of the last row and column of each block. By the overlapping nature of the blocks, the offset vector in the last column (or row) of a block provides the next offset vector in the first column (or row) of the block to its right (or below it). Simply change the first entry in the next vector to zero.
4. Let \(Q \) be the total of the offset values computed for cells in row \(n \). \(D(n, n) = D(n, 0) + Q = n + Q \).

Time analysis

As in the analysis of the block edit distance algorithm, the execution of the Four-Russians edit distance algorithm takes \(O(n^2 / \log n) \) time (or \(O(n^2 / (\log n)^2) \) time in the unit-cost RAM model) by setting \(t = \Theta(\log n) \). So again, the key issue is the time needed to precompute the block offset function. Recall that the first entry of an offset vector must be zero, so there are \(3^{2t-1} \) possible offset vectors. There are \(\sigma^t \) ways to specify a substring over an alphabet with \(\sigma \) characters, and so there are \(3^{2t-1} \cdot \sigma^t \) ways to specify the input to the offset function. For any specific input choice, the output is computed in \(O(\tau^t) \) time (via dynamic programming), hence the entire precomputation takes \(O(3^{2t} \tau^t) \) time. Setting \(\tau \) equal to \((\log n)/2\), the precomputation time is just \(O(n(\log n)^2) \). In summary, we have

Theorem 12.7.2. The edit distance of two strings of length \(n \) can be computed in \(O(n^{2/3}) \) time or \(O(\frac{\tau}{\log \tau}) \) time in the unit-cost RAM model.

Extension to strings of unequal lengths is easy and is left as an exercise.

12.7.4 Practical approaches

The theoretical result that edit distance can be computed in \(O(n^{2/3}) \) time has been extended and applied to a number of different alignment problems. For truly large strings, these theoretical results are worth using. But the Four-Russians method is primarily a theoretical contribution and is not used in its full detail. Instead, the basic idea of precomputing either the restricted block function or the offset function is used, but only for fixed size blocks. Generally, \(t \) is set to a fixed value independent of \(n \) and often a rectangular 2 by \(r \) block is used in place of a square block. The point is to pick \(t \) so that the restricted block or offset function can be determined in constant time on practical machines. For example, \(t \) could be picked so that the offset vector fits into a single computer word. Or, depending on the alphabet and the amount of space available, one might hash the input choices for rapid function retrieval. This should lead to a computing time of \(O(n^{1/2}) \), although practical programming issues become important at this level of detail. A detailed experimental analysis of these ideas [339] has shown that this approach is one of the most effective ways to speed up the practical computation of edit distance, providing a factor of \(t \) speedup over the standard dynamic programming solution.
12.8. Exercises

1. Show how to compute the value $V(n, m)$ of the optimal alignment using only $\min(n, m) + 1$ space in addition to the space needed to represent the two input strings.

2. Modify Hirschberg's method to work for alignment with a gap penalty (affine and general) in the objective function. It may be helpful to use both the affine gap penalties developed in the text, and the alternative recurrences that pay for a gap when terminated. The latter recurrences were developed in the exercise 27 of Chapter 11.

3. Hirschberg's method computes one optimal alignment. Try to find ways to modify the method to produce more (all?) optimal alignments while still achieving substantial space reduction and maintaining a good time bound compared to the $O(nm)$-time and space method? I believe this is an open area.

4. Show how to reduce the size of the strip needed in the method of Section 12.2.3, when $|m - n| < k$.

5. Fill in the details of how to find the actual alignments of P in T that occur with at most k differences. The method uses the $O(km)$ values stored during the k differences algorithm. The solution is somewhat simpler if the k differences algorithm also stores a sparse set of pointers recording how each farthest-reaching d-path extends a farthest-reaching $(d - 1)$-path. These pointers only take $O(km)$ space and are a sparse version of the standard dynamic programming pointers. Fill in the details for this approach as well.

6. The k differences problem is an unweighted (or unit weighted) alignment problem defined in terms of the number of mismatches and spaces. Can the $O(km)$ result be extended to operator- or alphabet-weighted versions of alignment? The answer is: not completely. Explain why not. Then find special cases of weighted alignment, and plausible uses for these cases, where the result does extend.

7. Prove Lemma 12.3.2 from page 274.

8. Prove Lemma 12.3.4 from page 277.

9. Prove Theorem 12.4.2 that concerns space use in the P-against-all problem.

10. The threshold P-against-all problem

The P-against-all problem was introduced first because it most directly illustrates one popular approach to using suffix trees to speed up dynamic programming computations. And, it has been proposed that such a massive study of how P relates to substrings of T can be important in certain problems [183]. Nonetheless, for most applications the output of the P-against-all problem is excessive and a more focused computation is desirable. The threshold P-against-all problem is of this type: Given strings P and T and a threshold d, find every substring T' of T such that the edit distance between P and T' is less than d. Of course, it would be cheating to first solve the P-against-all problem and then filter out the substrings of T whose edit distance to P is greater. We want a method whose speed is related to d. The computation should increase in speed as d fails.

The idea is to follow the solution to the P-against-all problem, doing a depth-first traversal of suffix tree T, but recognize subtrees that need not be traversed. The following lemma is the key.

Lemma 12.8.1. In the P-against-all problem, suppose that the current path in the suffix tree specifies a substring S of T and that the current dynamic programming column (including the zero row) contains no values below d. Then the column representing an extension of S will also contain no values below d. Hence no columns need be computed for any extensions of S.

11. Give a complete proof of the correctness of the all-against-all suffix tree algorithm.

12. Another, faster, alternative to the P-against-all problem is to change the problem slightly as follows: For each position i in T such that there is a substring starting at i with edit distance less than d from P, report only the smallest such substring starting at position i. This is the $(P$-against-all) starting location problem, and it can be solved by modifying the approach discussed for the threshold P-against-all problem. The starting location problem (actually the equivalent ending location problem) is the subject of a paper by Ukkonen [437]. In that paper, Ukkonen develops three hybrid dynamic programming methods in the same spirit as those presented in this chapter, but with additional technical observations. The main result of that paper was later improved by Cobbe [105].

Detail a solution to the starting location problem, using a hybrid dynamic programming approach.

13. Show that the suffix tree methods and time bounds for the P-against-all and the all-against-all problems extend to the problem of computing similarity instead of edit distance.

14. Let R be a regular expression. Show how to modify the P-against-all method to solve the R-against-all problem. That is, how to use a suffix tree to efficiently search for a substring in a large text T that matches the regular expression R. (This problem is from [63].)

Now extend the method to allow for a bounded number of errors in the match.

15. Finish the proof of Theorem 12.5.2.

16. Show that in any permutation of n integers from 1 to n, there is either an increasing subsequence of length at least \sqrt{n} or a decreasing subsequence of length at least \sqrt{n}. Show that, averaged over all the $n!$ permutations, the average length of the longest increasing subsequence is at least $\sqrt{n}/2$. Show that the lower bound of $\sqrt{n}/2$ cannot be tight.

17. What do the results from the previous problem imply for the a-sum problem?

18. If S is a supersequence of another string S', then S' is said to be a supersequence of S. If two strings S_1 and S_2 are subsequence of S, then S' is a common supersequence of S_1 and S_2. This leads to the following natural question: Given two strings S_1 and S_2, what is the shortest supersequence common to both S_1 and S_2. This problem is clearly related to the longest common supersequence problem. Develop an efficient relationship between the two problems, and the lengths of their solutions. Then develop efficient methods to find a shortest common supersequence of two strings. For additional results on subsequences and supersequences see [240] and [241].

19. Can the results in the previous problem be generalized to the case of more than two strings? For instance, is there a natural relationship between the longest common subsequence and the shortest common supersequence of three strings?

20. Let T be a string whose characters come from an alphabet Σ with σ characters. A subsequence S of T is nondecreasing if each successive character in S is lexically greater than or equal to the preceding character. For example, using the English alphabet let $T = \text{characterizing}$; then $S = \text{aacrst}$ is a nondecreasing subsequence of T. Give an algorithm that finds the longest nondecreasing subsequence of a string T in time $O(|n|)$, where n is the length of T. How does this bound compare to the $O(|n| \log \sigma)$ bound given for the longest increasing subsequence problem over integers.

21. Recall the definition of r given for two strings in Section 12.5.2 on page 290. Extend the
definition for \(r \) to the longest common subsequence problem for more than two strings, and use \(r \) to express the time for finding an LCS in this case.

22. Show how to model and solve the LIS problem as a shortest path problem in a directed, acyclic graph. Are there any advantages to viewing the problem in this way?

23. Suppose we only want to learn the length of the LCS of two strings \(S_1 \) and \(S_2 \). That can be done, as before, in \(O(\log n) \) time, but now only using linear space. The key is to keep only the last element in each list of the cover (when computing the LIS), and not to generate all of \(\Pi(S_1, S_2) \) at once, but to generate (in linear space) parts of \(\Pi(S_1, S_2) \) on the fly. Fill in the details of these ideas and show that the length of the LCS can be computed as quickly as before by storing only linear space.

Open problem: Extend the above combinatorial ideas, to show how to compute the actual LCS of two strings using only linear space, without increasing the needed time. Then extend to more than two strings.

24. (This problem requires a knowledge of systolic arrays.) Show how to implement the longest increasing subsequence algorithm to run in \(O(n) \) time on an \(O(n) \)-element systolic array (remember that each array element has only constant memory). To make the problem simpler, first consider how to compute the length of the LIS, and then work out how to compute the actual increasing subsequence.

25. Work out how to compute the LCS in \(O(n) \) time on an \(O(n) \)-element systolic array.

26. We have reduced the LCS problem to the LIS problem. Show how do the reduction in the opposite direction.

27. Suppose each character in \(S_1 \) and \(S_2 \) is given an individual weight. Give an algorithm to find an increasing subsequence of maximum total weight.

28. Derive an \(O(nm \log m) \)-time algorithm to compute edit distance for the convex gap weight model.

29. The idea of forward dynamic programming can be used to speed up (in practice) the (global) alignment of two strings, even when gaps are not included in the objective function. We will explain this in terms of computing unweighted edit distance between strings \(S_1 \) and \(S_2 \) (of lengths \(n \) and \(m \) respectively), but the basic idea works for computing similarity as well. Suppose a cell \((i,j) \) is reached during the (forward) dynamic programming computation of edit distance and the value there is \(D(i,j) \). Suppose also that there is a fast way to compute a lower bound, \(L(i,j) \), on the distance between substrings \(S_1[i+1, \ldots, n] \) and \(S_2[j+1, \ldots, m] \). If \(D(i,j) + L(i,j) \) is greater than or equal to a known distance between \(S_1 \) and \(S_2 \), obtained from some particular alignment, then there is no need to propagate candidate values forward from cell \((i,j) \). This question is to find efficient methods to compute "effective" values of \(L(i,j) \). One simple one is \(|n-m| + |i-j| \). Explain this. Try it out in practice to see how effective it is. Come up with other simple lower bounds that are much more effective.

Hint: Use the count of the number of times each character appears in each string.

30. As detailed in the text, the Four-Russians method precomputes the offset function for \(3^{t^2} \) specifications of input values. However, the problem statement and time bound allow the precomputation of the offset function to be done after strings \(S_1 \) and \(S_2 \) are known. Can that observation be used to reduce the running time?

An alternative encoding of strings allows the \(2^2 \) term to be changed to \((t+2)^2 \) even in problem settings where \(S_1 \) and \(S_2 \) are not known when the precomputation is done. Discover and explain the encoding and how edit distance is computed when using it.

31. Consider the situation when the edit distance must be computed for each pair of strings from a large set of strings. In that situation, the precomputation needed by the Four-Russians method seems more justified. In fact, why not pick a "reasonable" value for \(t \), do the precomputation of the offset function once for that \(t \), and then embed the offset function in an edit distance algorithm to be used for all future edit distance computations. Discuss the merits and demerits of this proposal.

32. The Four-Russians method presented in the text only computes the edit distance. How can it be modified to compute the edit transcript as well?

33. Show how to apply the Four-Russians method to strings of unequal length.

34. What problems arise in trying to extend the Four-Russians method and the improved time bound to the weighted edit distance problem? Are there restrictions on weights (other than equality) that make the extension easier?

35. Following the lines of the previous question, show in detail how the Four-Russians approach can be used to solve the longest common subsequence problem between two strings of length \(n \), in \(O(n^2 \log n) \) time.