Music-Defined Networking

Mary Hogan*
Princeton University
mh43 @cs.princeton.edu

ABSTRACT

For several years researchers have used the term “network
orchestration” as a metaphor. In this paper, we make the
metaphor reality; we describe a novel approach to network
orchestration that leverages sounds to augment or replace
various network management operations. We test our Music-
Defined Networking approach with both a real and a virtual
network testbed, on several mechanisms and applications:
from datacenter server fan failure detection to authentication,
from load balancing to explicit congestion notification and de-
tection of heavy hitter flows. Our approach can be used with
and without a Software-Defined Network controller. Despite
its limitations, we believe that sound-based network manage-
ment has potential to be further explored as an effective and
inexpensive out-of-band orchestration technique.

1 INTRODUCTION

Delivering management traffic is essential to operate and
orchestrate network services. In existing datacenters, for
example, thousands of servers, storage units or switches run
a vast plethora of operations and management tasks: from
simple device booting, restart or configuration, to complex
and computationally expensive anomaly detection, intrusion
detection systems, monitoring and diagnostics.

To tame such complexity, many Software Defined Network
(SDN) solutions, as well as creative network and traffic en-
gineering designs, have been proposed; see e.g., [7, 17, 23].
Despite those advances, management traffic is still carried
in-band with data plane traffic both inside and out of data-
centers. It is common for operators to isolate management
traffic with VLANS or other forms of slicing. However, even
with such logical separation, sharing the infrastructure for
data and management traffic is risky [10, 41], since data
plane or hardware failures could cut off network management
traffic as well, aborting important management tasks such
as diagnostics, intrusion detection systems, congestion no-
tification or recovery signals. Previously, researchers have

*Work done while at Saint Louis University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotNets-XVII, Redmond, WA, USA

© 2018 ACM. 978-1-4503-6120-0/18/11...$15.00

DOI: 10.1145/3286062.3286085

155

Flavio Esposito
Saint Louis University
flavio.esposito@slu.edu

shown how an out-of-band management network could be
desirable to reduce the growing complexity of datacenter op-
erations [10, 14, 16, 18, 40, 41]. Some of these approaches
have been criticized, however, as deploying them may result
in significant costs or changes to the datacenter infrastruc-
ture. For example, they may require construction of a parallel
network, which must support a prohibitively large port count
to reach all data and control devices [10]; other obstructions
include the installation of reflective surfaces [14, 16, 18, 40]
or a raise of the ceiling level [18, 40]. In addition to these
concerns, WiFi management networks are limited by coor-
dination between transmitters and interference [41]. Other
solutions that reduce out of band costs by using the exist-
ing infrastructure require installing expensive equipment per
server rack [41].

In the past, requirements for out-of-band management net-
works have focused, at best, on three main design criteria: (i)
reliable, i.e., the management network should survive (data-
center) failures and faults, so that recovery and diagnostics
can always be performed; (ii) scalable, so that all devices in a
datacenter can be reached, and (iii) deployable, that is, a prac-
tical out-of-band network should be compatible with existing
equipment [10]. Aside from these wise requirements, we be-
lieve a management network should also be (iv) simple, i.e.
able to run without major interventions to the existing (dat-
acenter) infrastructure, such as inserting complex logic to a
switch, and (v) inexpensive. To our knowledge, none of these
five design principles have been simultaneously considered
for an out-of-band management network.

To this aim, in this paper we propose Music-Defined Net-
working, a paradigm where several network mechanisms can
be programmed in response to specific sound sequences, i.e.,
music, coming from real or virtual devices. We explore both
active applications, in which we program network devices
to emit a certain sound, and passive applications, where we
monitor sounds produced by devices to identify when they
(may) have failed. Using low-cost speakers, microphones
and Raspberry Pis, we augment with sound capabilities data-
center components, such as real and virtual switches, hosts,
SDN controllers. With a local testbed and with sound mea-
surements in a real datacenter, we demonstrate how Music-
Defined Networking can provide a low-cost out-of-band man-
agement network. Such a network is able to replace existing
management operations, hence limiting management traffic,
or to provide additional information, e.g., detecting hardware
failures.

The rest of the paper is organized as follows. Related work
is discussed in the next section. In Section 3 we discuss the
details of both our real and virtual network testbeds that we

use to demonstrate several active music-defined operations
in which a device emits sounds to in response to an event.
In particular, in Section 4 we show how sounds, if played
in the right sequence, can be used as an (additional) out-of-
band authentication mechanism, or to implement any finite
state machine for network state processing. In Section 5 we
show how sounds can be an effective measurement tool by
implementing two use cases, (i) a heavy hitter detection and
(ii) a port scan detection. In Section 6 we show how we
can perform music-defined traffic engineering by mapping
specific sounds to different queue sizes in different switches.
In Section 7 we show an example of passive sound-based
network management in which we listen to a hardware com-
ponent to detect its (imminent) failure. Sounds coming from
a server cooling fan can be encoded and decoded using the
Fast-Fourier Transform (FFT) [32], and their absence due to a
hardware failure can be easily detected despite the datacenter
background noise from other fans. We then conclude our
work in Section 8 discussing limitations and a few Music-
Defined Networking research directions.

2 RELATED WORK

Acoustic data transmission. The idea of using sound waves
to transfer information has been floated before [19, 20, 27, 31,
33, 34]. With the aim of transferring data messages, audio-
based networking has been presented as an alternative form of
communication. In [27], for example, audio networking was
utilized for both short- and long-range data transfer. Acoustic
waves have been used for underwater communication [33, 34].
The same principles used underwater have also been adapted
to the air medium [15, 15, 19, 25, 31]. However, given the low
throughput capability (it can take up to six seconds to send
a 20 bytes packet over a single hop [19]), effective acoustic
transmission has been limited to replacement of magnetic
induction in Near Field Communication [31]. Differently
from all these sound approaches, our focus in this paper is
instead on the control and management plane, not on the data
plane.
Acoustic insecurity. As sounds are often overlooked when
securing systems, researchers have developed several forms
of acoustic attacks. For example, audio signals can facilitate
covert communication with ultrasound frequencies [19], or
they can be leveraged to exploit security vulnerabilities, both
by listening to sounds produced by devices and by generating
sounds to gain control over devices [15, 25]. These attacks de-
tect the different acoustic emanations generated by processors
based on the operations being performed. By eavesdropping
on these sounds, researchers have been able to manipulate
emanations to transmit data [25], to attack cryptographic
schemas [15], and to reconstruct user information [3, 4]. In
addition to gaining information from a system, audio signals
can also be used to trigger unexpected and unwanted behav-
ior in mobile devices [20] and in popular speech recognition
systems such as Apple Siri and Amazon Alexa [39].

We also consider sound signals to actively or passively
control devices for security applications, for example, to open

156

Inexpensive

Microphone
S J?Q
7 gam—

Preamplif[er

N

Music-Defined Networking testbed: We extend the
firmware of the Zodiac FX switches so they could send our Music Pro-
tocol messages, which trigger signals to be played by a connected host.
An application listening for sounds then interprets the sound sequence
(music) and launches the appropriate action, e.g., send an OpenFlow
Flow-MOD message (§ 6) or open a previously closed port on a given

Figure 1:

switch (§ 4).
1le8

Lo ” 1.0
0.8
2 0.8

e
206 06
=

n
W
CDF

0.4 s1 52 0.4
s

0.2 0.2

0.01 0.0

600 800 1000 1200 1400 1600
Frequency (Hz)

0.15 0.25 0.35 0.45

FFT Completion Time [ms]

(a) FFT of audio from 5 switches (b) CDF of FFT processing time

Figure 2: We use the Fast Fourier Transform to process multiple
sounds captured by the listening device and to identify the frequencies
played by a switch.

a previously closed switch port (§ 4) or to detect a denial of
service or a (naive) port scanning attack (§ 5). Differently
from these papers though, this work is the first attempt, to
our knowledge, to use sound signals, with single-tone alerts
or in a well-defined sequence (music), to trigger or execute a
wide range of network management operations, such as active
queue management and load balancing (§ 6), access control
(§ 4) or hardware failure detection (§ 7).

3 TESTBED

To establish the practicality of our approach, we built two
testbeds, one using real switches and one using virtual switches.

Since switches today do not have built-in speakers, we
connected a Raspberry Pi to each switch in order to generate
sounds. In particular, we connected 7 Zodiac FX switches
(whose cost is currently under 80 USD) to 7 Raspberry Pis.
We attach the Pi to a port on the FX switch; each Pi is con-
nected to an inexpensive speaker (Figure 1).

We modified the firmware of the Zodiac FX switches !,
so that when we want the switch to play a sound, a Music
Protocol (MP) message is sent to the Pi. The MP payload

Thttps://morthboundnetworks.com/products/zodiac-fx

contains the frequency at which we want to play the sound,
its duration and intensity (volume). To support MP message
marshaling on the Zodiac FX switches, we had to disable
OpenFlow on the switch Ethernet port connected to the Pi.

Two major limitations of the Zodiac FX switches forced
us to implement some of our use cases on a virtual network
testbed using Mininet [24]: (i) the RAM is limited to 120KB
and (i) multi-packet queues are not supported (only a single
packet can be sent at once). The limited memory also forced
us to use the raw API of the Lightweight IP stack 2 to send
messages.

Sound length, duration and intensity can be treated as a
policy to allow programmability of the music-defined mecha-
nism to be deployed. Ranges for these policies are dictated
by the hardware capabilities of speakers and microphones.

In our Music-Defined Networking testbed, we empirically
found that a distance of approximately 20 Hz between fre-
quencies is needed to accurately differentiate them. Each
switch in our testbed was assigned a unique set of frequencies,
so that we can identify sounds played by different switches
at the same time (Figure 2a). Although we only tested one
application at a time, it is possible to support multiple MDN
applications simultaneously, as long as each task uses a dif-
ferent set of frequencies and the listening application knows
the frequency mappings. The minimum intensity to detect a
sound clearly depends on the distance from speaker to micro-
phone, but in our experiments we played sounds of at least
30dB. Normal conversation is on the order of 50 dB [30].

We also found that, although sound duration varied be-
tween devices, the shortest possible length generated in our
testbed was approximately 30ms. The length of the sound
dictates how long it takes the Music-Defined controller (or
the listening application) to process the sound; smaller sounds
means we can listen for shorter durations, and smaller sam-
ples take less time to process. Figure 2b shows the distribution
of FFT processing time for audio samples of approximately
50ms; as we can see, approximately 90% of our samples were
processed in 0.35ms or less.

We tested our applications with and without background
noise. In both cases, we could accurately distinguish the
sounds from switches. The level of noise may, however, grow
significantly based on other applications, as well as on full-
duplex sound communications (that we did not implement).
Scaling an MDN application to even a medium size datacenter
may result in environments that are even more uncomfortable
for operators, who must already wear noise canceling head-
phones. We believe that accurately tuning sound parameters
to manage sound interference, mitigate operator discomfort
and support multiple MDN applications is an interesting re-
search direction.

4 STATE PROCESSING

By design, Software-Defined Networking focuses on a cen-
tralized controller governing stateless switches [29]. Other

https://github.com/dreamcat4/lwip.

157

2500

—— Sent by hl to h2
---Received by h2

2000

1500

Bytes

1000

500

+0 dB
-10dB
-20 dB
-30dB
-40 dB
-50 dB
-60 dB
-70 dB
0 -80 dB

24 26 27 28 30 32 33 34 36
Time (s)

0 10 20

Time [s]

30 40

(a) Bytes sent/recvd (b) Mel-scaled spectrogram

Figure 3: Port knocking: the controller receives 3 sounds in a correct
sequence, each corresponding to a port number (as a form of authenti-
cation), and allows TCP traffic on a specific previously closed port.

work, e.g., [9] proposed inserting data plane state machines
on switches, so they could run some of the functionalities
achieved today through middleboxes. Data plane states are
probably impossible to maintain (today) with sounds, since
playing a sound every packet received seems unfeasible with
current hardware and datacenter traffic rates. Management
plane states instead have larger timescales, so sounds can be
processed inside routers, switches or other middleboxes, or
within the application process running the logically central-
ized SDN controller. It simply depends on where we attach
speakers and microphones.

As a state processing example, we implemented a port
knocking finite state machine, similar to the one presented
in OpenState [9]. In our implementation, however, states
are stored in a Music-Defined Network (MDN) controller
attached to the Zodiac FX switches, not in the switches them-
selves. In particular, the controller keeps track of what sounds
it has heard thus far from the switch; each sound is then
mapped to the destination port number received by the switch.
In the controller, we know what frequencies are associated
with each port for a switch, so we know which frequencies
to listen for. Once we hear the frequencies in the correct
sequence, we allow traffic to be forwarded by adding a flow
table entry at the switch. The match that specifies the port
opening event depends not only on the sound (and so on
packet header information), but also on the current state of
the finite state machine; an incoming packet with port x is
associated to a forwarding action when the port is open, but
to a drop action when the system is in any other state.

In Figure 3a we show how the sender is attempting to send
packets on the port to be opened for about 34 seconds (blue
continuous line). After the third sound has been interpreted in
the correct combination by the state machine, (see Figure 3b)
the port is opened and all traffic sent by host 1 is received by
host 2 (red dashed line in Figure 3a).

S MUSIC-DEFINED TELEMETRY

Operators continuously monitor traffic to track events ranging
from performance limitations to attacks. This monitoring
requires continuous, real-time measurement and analysis — a
process commonly referred to as network telemetry [37]. The
introduction of SDN has permitted the deployment of new

+0 dB
-10dB
-20 dB
-30 dB
-40 dB
-50 dB
-60 dB
-70 dB
-80 dB

Frequency (Hz)

N
T
>
9
c
9]
El
=
1]
I
fre

s il ‘V‘vm.
10 20 30 40 50 60
Time (s)

00 10 20 30 40 50 60
Time (s)

(a) Heavy hitter detection

+0 dB
-10dB
-20 dB
-30 dB
-40 dB
-50 dB
-60 dB
-70 dB
-80 dB

(b) Noisy heavy hitter detection

Frequency (Hz)

+0 dB
-10dB
-20 dB
-30 dB
-40 dB
-50 dB
-60 dB
-70 dB
-80 dB

+0 dB
-10dB
-20 dB
-30 dB
-40 dB
-50 dB
-60 dB
-70 dB
-80 dB

N
T
>
9
c
9]
El
o
4]
I
fre

20
Time (s)

30 40 20

Time (s)

30 40

(c) Port scanning detection (d) Noisy port scanning detection

Figure 4: Music-Defined Telemetry: (a-b) Heavy hitter detection. (a) switches are programmed to play a sound based on the hash of the flow. (b)
Same as (a) but while playing Sia’s Cheap Thrills, a popular song, as random background noise. (c-d) Port scanning detection: real switches are
programmed to play a sound based on the destination port number. The MDN controller is programmed to listen to a set of available port numbers.
(d) Same as (c) but with Sia’s Cheap Thrills, a popular song, as random background noise.

centralized network solutions that have improved many net-
work operations. The majority of these solutions rely on the
assumption that a centralized controller collects and merges
measurements from different monitoring points to obtain a
network-wide view. This task is challenging when the same
packet may pass through several monitoring points, as packets
can be double-counted [5]. Existing measurement solutions
either assume that each packet is measured at a single mon-
itoring point or that the routing of each packet is known by
the controller. Another active measurement approach is to
mark the sampled packet so that other measurement points do
not process it, as they are aware that the packet was already
considered.

In this section we demonstrate with two use cases that
our Music-Defined Networking approach can be an effective
strategy for several network monitoring tasks and even for
detecting traffic anomalies, such as misconfigurations and
(some naive) attacks. By assigning each network component
to a different set of sound frequencies, we can accurately
perform, with a fairly fine-grained granularity, measurements
that are (i) passive, i.e., do not require traffic modification
in any way, (ii) routing oblivious, (iii) have very flexible
placement of the measurement point (the set of microphones
and speakers), and (iv) are network topology oblivious.

We focus on demonstrating two Music-Defined Telemetry
use cases: one for monitoring purposes (heavy hitter detec-
tion) and one for security (port scanning attack detection).
Both are shown in Figure 4. By heavy hitter detection we
mean the identification of a flow that consumes more than a
fraction of the link capacity during a given time interval.
Heavy-hitter detection. To detect a heavy hitter flow, we
hash a flow tuple defined by source port, destination port,
source IP, destination IP and protocol type [22] and map it
to a given frequency. We then demonstrate how our Music-
Defined Network controller, or any application process capa-
ble of listening and processing sounds, can recognize when a
sound with a similar frequency is played more than a thresh-
old in a given time interval (Figure 4a-b), with (b) and without
(a) random background noise.

Heavy hitter detection may be a far more complex task
than detecting sound frequencies, and could require complex
algorithms [35], sampling or sketching techniques [26, 38],

158

that may operate in the data plane [35] or in the control
plane [26, 38].

We remark that scalability is also a concern: there may be

thousands of active flows per minute on an ISP backbone link
or a datacenter top-of-rack switch [6]. Despite the number
of distinct feasible frequency-flow mappings that we can per-
form with today’s microphones, even including ultrasounds
we would probably not be able to detect every single flow. To
this end, we do not claim that Music-Defined Telemetry is a
scalable replacement for all these complex solutions, but we
believe that it could be suitable for smaller sized networks, or
to offload some of the measurement tasks within a datacenter,
reducing their input size or increasing their processing speed.
Moreover, Music-Defined Networking could be a viable solu-
tion for other telemetry applications that do not need single-
level flow scalability. With our inexpensive testbed hardware
alone, we could distinguish up to 1000 distinct frequencies
played simultaneously only considering the human-hearable
frequency range. An average size Internet Service Provider
controls several Autonomous Systems; counting the distinct
number of source addresses who send traffic to a set of desti-
nations, merely using sounds, seems conceivable if we merely
map AS source-destination identifiers to frequencies.
Port Scanning. As another telemetry example, this time with
focus on security, we implemented a port scanning attack
detection (Figure 4c-d.) In particular, we generated a port
scanning attack on a host, forcing traffic to pass through the
same real switch. When hit by a packet, the switch plays a
sound whose frequency is based on the destination port num-
ber. As we can see in Figure 4c, the port scan can be identified
by a clear logarithmic line on the Mel-scaled spectrogram.
The log is merely given by the Mel-scale on the y-axis. Even
in this case we repeated the experiment adding random noise
(Figure 4d).

Similar to the discussion above for heavy hitters, we ad-
mit that detecting a port scanning attack may be a far more
complex operation. Its detection may require network-wide
knowledge [38] and more in-depth analysis [8]; although we
believe that it is possible to detect naive port scan attacks,
sound analysis alone is surely insufficient. Other applica-
tions, however, may be more feasible and may alert network

Queue length > threshold

—— Outgoing queue sl -> s2 \

—-= Qutgoing queue sl -> s3

==

,m“'“!”ihlnlnllll

Inst Queue Length (packets)

40 I
20 i
J
%1 2 3 4 5 &
Time (s) Time (s)
(a) Queue length (b) Mel-scaled spectrogram

+0dB
-10dB
-20dB
-30dB
-40 dB
-50 dB
-60 dB
-70 dB

g 140 : T +0dB
% 120 , ——- Low threshold -10 dB
T : High threshold | — 20 dB
g i 1 z 30 dB
S 80] 1 >
S 1 c -40 dB
- 60 -] i
° 1 F -50 dB
=1 ! 9]
g 40 ! b -60 dB
o {
o 20 i -70 dB
£ 0 1 -80 dB
0 3 6 9 12 15 18
Time (s) Time (s)
(¢) Queue length (d) Mel-scaled spectrogram

Figure 5: (a-b) Load balancing application: when the MDN controller hears a sound associated with an overloaded queue, it installs a new Flow-
MOD rule to split traffic across two ports. (a) shows the queue length evolution, (b) shows when we play the sound that tells us the queue is congested
(marked with the vertical blue line). (c-d) Queue size monitoring application: ;25 pkts in queue play 500Hz, 25;pkts;75 play 600Hz, ;75 pkts play
700Hz. Frequency values in the spectrogram are normalized by the mel-scale.

operators to events that call for further investigation. For ex-
ample, detection of Distributed Denial of Service (DDoS) via
k-superspreaders: a k-superspreader is a host that contacts
more than k unique destinations during a time interval. A
DDoS victim is a host that is contacted by more than k unique
sources. By mapping destination addresses to frequencies, we
can presumably detect k-superspreaders and hence a DDoS.
We leave that as an open problem.

6 TRAFFIC ENGINEERING

Traffic engineering solutions can be classified according to
two main design dimensions: one that focuses on the choice
of forwarding paths [11, 12], and another in which sending
rates are dynamically adjusted to balance incoming traffic
flows [21, 28]. Some recent solutions even use a combina-
tion of the two [23]. In this section we show how sound can
be used as an effective signal to trigger any traffic engineer-
ing approach, whether for traffic steering or to respond to
congestion events.

Load balancing. In particular, as a proof of concept, we
implemented a music-defined load balancing application on
a virtual network testbed. We attach to an MDN controller
four switches connected in a rhomboid topology, with the two
hosts attached to two opposite vertices of the rhombus. The
source host continuously sends traffic with a progressively
increasing rate to the destination, initially using a single path.
Every 300ms, each switch is programmed to send a sound
whose frequency depends on the number of packets currently
in the switch’s queue. Switches whose queues have less than
25 packets play a sound at the lowest frequency; a higher
sound is played if the queue has a number of packets between
a low threshold (which in our implementation was set at
25 packets) and a high threshold (set at 75 packets) and the
highest sound is played when the switch is (getting) congested
i.e. the queue has more than 75 packets (Figure 5b).

When the MDN controller application hears a sound asso-
ciated with an overloaded switch (in our experiment, at time
3.7s), it sends an OpenFlow flow-MOD message so that the
source traffic gets split across two ports, balancing the traffic
load across the two different available routes (Figure 5a).
Switch Congestion Monitoring. As another use case appli-
cation, we show how MDN can be used to detect thresholds on

159

queue size. This in turn can be used to drive in-network flow
or congestion control decisions, without waiting for source
reactions, without having to modify the transport protocol, as
in DataCenter TCP (DCTCP) [1], and without using the less
efficient Explicit Congestion Notification (ECN) mechanism
of TCP. DCTCP has been shown to have greater performance
but fairness and convergence drawbacks [2].

In Figure 5c-d, we show a simple use case in which we
have a virtual switch notify the MDN controller with a sound
at progressively higher frequencies, depending on how many
packets are in its queue.

In our experiments, we send data traffic through the switch
and we measure the instantaneous queue length using the
traffic control Linux utility t ¢ every 300ms. We then play a
different sound based on the number of packets in the switch
queue; the MDN controller is programmed to listen for those
specific frequencies, so if it hears a frequency it recognizes, it
knows the range for the number of packets in the queue (and
can then make a congestion decision based on that). After
all traffic has been sent to the destination, the queue size gets
again lower than 25 packets and the controller is notified with
another sound at a lower frequency (500 Hz).

7 SERVER FAN FAILURE DETECTION

Detection of malfunctioning hardware is a key element of
network management. In this section, we show how passively
listening to sounds can be an effective out-of-channel mecha-
nism that may avoid severe hardware failures. In datacenters
today, these failures are a major financial risk, and the ef-
ficiency of countermeasures is far from ideal [13, 36]. To
summarize a recent study by Wang et al. [36] that looked at
290,000 hardware failure reports collected over the past four
years, automatic hardware failure detection and handling have
potential to be very accurate, significantly reducing human
labor, “but we need to improve these systems, especially in
“bad spots” where the failure rate is higher.”

Fire alarms are a widely adopted disaster countermeasure in
today’s datacenters. Aside from reacting to problems when it
is already too late, fire alarms can cause side effects [13]. Per-
sonal communication with experienced IT operators exposed
us also to recent stories of ineffective emergency responses
in which servers that were powered off due to an emergency

+0 dB
-10 dB

-20 dB

Iy =)
=) =
© ©
o ~
IS
=)
©
o

-30dB

2048

-40 dB

Frequency (Hz)
Frequency (Hz)

.
=)
N
b

-50 dB

.
o
N
bN

-60 dB

o
a2
N

-70 dB

-80 dB 0 -
0 06121824 3 364248

Time (s)

(b) Datacenter: server OFF

0 i i
0 06121824 3 364248
Time (s)

(@) Datacenter: server ON

+0 dB
-10 dB
-20 dB
-30dB
-40 dB
-50 dB
-60 dB
-70 dB
-80 dB

Frequency (Hz)

+0 dB

-10 dB 10dB

IS
=)
©
o

-20 dB

+0 dB
-20 dB
30dB -30 dB
-40 dB

el

-50 dB
-60 dB
-70 dB
-80 dB
0 06121824 3 364248
Time (s)

(c) Office: server OFF

N
=3
=
&
N
=3
B
3

-40 dB

N
et
>
9
c
151
E
o
o
I

.
=)
N}
bN
.
=)
N
bN

-50 dB
-60 dB

o
a8
N
o
a8
N

-70 dB

3 3.6 42438
Time (s)

(b) Office: server ON

Figure 6: Sound waves of a single server are detectable despite the datacenter noise: mel-scaled noise spectrograms of a server with (a-c) and
without a functioning fan (b-d) in a datacenter (a-b), and in an office environment (c-d).

le7

—— server OFF - server ON
--- server ON - server ON

—— server OFF - server ON
--- server ON - server ON

|A Magnitude|

0 5000 10000 15000 20000 0
Frequency (Hz)

5000 10000 15000 20000
Frequency (Hz)

(a) Datacenter (b) Office

Figure 7: Fan noise is processed to detect a failure: after a difference
of amplitude is detected we launch an out-of-band signal alert.

were immediately restored by Uninterruptible Power Supply
(UPS) units.

In this section we show an inexpensive countermeasure
for datacenter failure detection that operates by monitoring
the sound of server fans and detecting when one has failed.
To this aim, we set up several sound-listening scenarios with
different types of microphones (from very cheap to fairly
expensive), and we test their ability to detect fan failure with
different background noise levels.> The open question we
explore is: Can we detect the failure of a single server despite
the typical datacenter noise? * After capturing the noisy
signal, we were able to answer positively to this question with
a closely placed microphone (Figures 6 and 7).

To identify failures, we find the total amplitude of each
frequency in recorded sounds with a server fan both on and
off; we obtain such amplitudes by computing the FFT of each
given sound sample. We then use these amplitudes to classify
the state (health) of the fan. The difference in amplitude for
certain frequencies is considerably larger when comparing
two audio signals of the fan on and off (blue continuous line in
Figure 7) than when comparing two samples of a functioning
fan (red dashed line in Figure 7). This is reflected in the
spectrograms reported in Figure 6: when the fan is operating,
the specific frequencies it generates have noticeably greater
amplitudes than when the fan is off. Two interesting questions
that remain open are: (1) How many distinct server anomalies

3Note that some servers in modern datacenters may be equipped with temper-
ature (or other) sensors. Our datacenter today does not have those. Moreover,
some of these sensors emit sounds when they detect a problem, but they
often require a human to hear it; e.g., while conducting our experiments, we
heard a misconfigured server beeping for weeks.

4Datacenter noise may exceed 85 dBA [30].

160

can we recognize and (2) what is the optimal microphone-
server distance to be able to correctly distinguish multiple
fan signals?

8 CONCLUSION

In this paper, we have shown that Music-Defined Networking
can be used to orchestrate network management functions
with a simple and inexpensive out-of-band channel whose
implementation requires minimal infrastructure changes. We
analyzed frequencies produced by datacenter server cooling
fans as an efficient disaster countermeasure.

We also leveraged sound to transmit control plane infor-
mation. In particular, we implemented several applications
in which a listening device performs management operations
after learning the state of a switch from audio signals, without
relying on traditional control messages.

Aside from the limitations that we have already discussed
throughout the paper, our Music-Defined Networking ap-
proach poses several challenges for practical implementations
that warrant further exploration. First, we limit our evalua-
tion to close-range applications, as we transmit sound signals
between devices over a single hop. Practical systems are lim-
ited to devices that are placed close enough to each other to
transmit sounds without significant signal degradation. Sound
waves can, and have been, however, relayed, although with
very low throughput and for data plane transfers [19].A more
efficient multi-hop sound transmission would allow greater
flexibility in device placement. We leave this as an open
question.

Furthermore, as discussed in Section 5, with our equipment,
we found that we could feasibly use approximately 1000
unique frequencies simultaneously. An interesting research
direction is to coordinate an array of microphones listening to
different groups of switches, as well as to allow cooperation of
classical and ultrasound speakers and microphones. Including
frequencies outside the spectrum of human hearing would
allow for an increase in the number of discernible sounds
and for more complex and scalable network management
operations.

9 ACKNOWLEDGEMENT

We thank A. Johnson and D. Thomas for their support, and
the anonymous reviewers and our shepherd for their valuable
feedback. Work supported by NSF CNS-1647084 and CNS-
1836906.

REFERENCES

[1]

[2]

[6

=

[7

—

[8]

[9

—

[10]

(11]

[12]
[13]

[14]

[15]
[16]

(17]

[18]

[19]

[20]

[21]

[22]

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In
Proc. of ACM SIGCOMM 2010.

M. Alizadeh, A. Javanmard, and B. Prabhakar. Analysis of DCTCP:
Stability, Convergence, and Fairness. In Proc. of the ACM SIGMET-
RICS, pages 73-84. ACM, 2011.

D. Asonov and R. Agrawal. Keyboard acoustic emanations. In /EEE
Symposium on Security and Privacy, 2004. Proceedings. 2004, pages
3-11, May 2004.

M. Backes, M. Diirmuth, S. Gerling, M. Pinkal, and C. Sporleder.
Acoustic side-channel attacks on printers. In Proc. of the 19th USENIX
Conference on Security, pages 20-20, 2010.

R. B. Basat, G. Einziger, S. L. Feibish, J. Moraney, and D. Raz.
Network-wide routing-oblivious heavy hitters. In Proc. of the 2018
Symposium on Architectures for Networking and Communications Sys-
tems, ANCS ’18, pages 66-73, 2018.

T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In Proc. of the 10th ACM SIGCOMM Conf.
on Internet Measurement, IMC ’ 10, pages 267-280, 2010.

T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine Grained
Traffic Engineering for Data Centers. In Proc. of the 7th COnference
on Emerging Networking EXperiments and Technologies, CONEXT
11, pages 8:1-8:12, 2011.

M. H. Bhuyan, D. Bhattacharyya, and J. Kalita. Surveying port scans
and their detection methodologies. Comput. J., 54(10):1565-1581, Oct.
2011.

G. Bianchi, M. Bonola, A. Capone, and C. Cascone. Openstate:
programming platform-independent stateful openflow applications in-
side the switch. ACM SIGCOMM Computer Communication Review,
44(2):44-51, 2014.

L. Chen, J. Xia, B. Yi, and K. Chen. PowerMan: An Out-of-Band Man-
agement Network for Datacenters Using Power Line Communication.
In NSDI 18, pages 561-578, Renton, WA, 2018.

M. Chiesa, G. Kindler, and M. Schapira. Traffic engineering with
equal-cost-multipath: An algorithmic perspective. IEEE/ACM Trans.
Netw., 25(2):779-792, Apr. 2017.

M. Chiesa, G. Rétvdri, and M. Schapira. Lying your way to better
traffic engineering. In Proc. of CoONEXT, pages 391-398, 2016.

C. Cimpanu. Gas based fire suppression system shuts down NASDAQS
scandinavian datacenter https://goo.gl/VjqqHZ, 2018.

Y. Cui, S. Xiao, X. Wang, Z. Yang, C. Zhu, X. Li, L. Yang, and N. Ge.
Diamond: Nesting the data center network with wireless rings in 3d
space. In 13th USENIX NSDI, pages 657-669, Santa Clara, CA, 2016.
D. Genkin, A. Shamir, and E. Tromer. Acoustic cryptanalysis. J.
Cryptol., 30(2):392-443, Apr. 2017.

Ghobadi, Monia et al. ProjecToR: Agile Reconfigurable Data Center
Interconnect. In Proc. of SIGCOMM 2016, pages 216-229.

S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian.
Drill: Micro load balancing for low-latency data center networks. In
Proceedings of SIGCOMM 2017. ACM.

N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,
H. Shah, and A. Tanwer. Firefly: A reconfigurable wireless data center
fabric using free-space optics. In Proc. of SIGCOMM 2014.

M. Hanspach and M. Goetz. On covert acoustical mesh networks in
air. CoRR, abs/1406.1213, 2014.

R. Hasan, N. Saxena, T. Haleviz, S. Zawoad, and D. Rinehart. Sensing-
enabled channels for hard-to-detect command and control of mobile
devices. In Proceedings of the 8th ACM SIGSAC Symposium on In-
formation, Computer and Communications Security, ASIA CCS ’13,
pages 469-480, New York, NY, USA, 2013. ACM.

T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service. In Proc. of SIGCOMM 2014, pages 187-198, 2014.
Internet Assigned Numbers Authority (IANA). Assigned internet
protocol numbers https://www.iana.org/assignments/protocol-numbers/

161

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

(35]

(36]

(371

(38]

(391

[40]

[41]

protocol-numbers.xhtml, 2018.

P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C. L.
Lim, and R. Soulé. Semi-oblivious traffic engineering: The road not
taken. In /5¢th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 157-170, Renton, WA, 2018.

B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid
prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX,
pages 19:1-19:6, New York, NY, USA, 2010. ACM.

M. LeMay and J. Tan. Acoustic surveillance of physically unmodified
pes. In Security and Management, 2006.

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One
sketch to rule them all: Rethinking network flow monitoring with
univmon. In Proc. of the 2016 ACM SIGCOMM Conference.

A. Madhavapeddy, R. Sharp, D. Scott, and A. Tse. Audio networking:
the forgotten wireless technology. IEEE Pervasive Computing, 4(3):55—
60, July 2005.

H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video stream-
ing with pensieve. In Proc. of ACM SIGCOMM 2017, SIGCOMM °17,
pages 197-210, New York, NY, USA, 2017. ACM.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM CCR, 38(2):69-74, Mar. 2008.

D. Miljkovic. Noise within a data center. In 39¢h International Con-
vention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pages 1145-1150, May 2016.

R. Nandakumar, K. K. Chintalapudi, V. Padmanabhan, and R. Venkate-
san. Dhwani: Secure Peer-to-peer Acoustic NFC. In Proc. of the ACM
SIGCOMM 2013, pages 63-74, 2013.

K. R. Rao, D. N. Kim, and J.-J. Hwang. Fast Fourier Transform - Algo-
rithms and Applications. Springer Publishing Company, Incorporated,
1st edition, 2010.

H. Riksfjord, O. T. Haug, and J. M. Hovem. Underwater acoustic
networks - survey on communication challenges with transmission
simulations. In 2009 Third International Conference on Sensor Tech-
nologies and Applications, pages 300-305, June 2009.

M. Sharif-Yazd, M. Khosravi, and M. K. Moghimi. A Survey on Un-
derwater Acoustic Sensor Networks: Perspectives on Protocol Design
for Signaling, MAC and Routing. 05:12-23, 03 2017.

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford. Heavy-hitter detection entirely in the data plane. In Proceed-
ings of the Symposium on SDN Research, SOSR *17, pages 164176,
New York, NY, USA, 2017. ACM.

G. Wang, L. Zhang, and W. Xu. What can we learn from four years
of data center hardware failures? In 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 25-36, June 2017.

Q. Wu, J. Strassner, A. Farrel, and L. Zhang. Network telemetry and
big data analysis (expired). Internet-Draft draft-wu-t2trg-network-
telemetry-00, IETF Secretariat, March 2016. http://www.ietf.org/
internet- drafts/draft- wu- t2trg-network- telemetry-00.txt.

M. Yu, L. Jose, and R. Miao. Software defined traffic measurement
with opensketch. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, nsdi’ 13, pages 2942,
Berkeley, CA, USA, 2013. USENIX Association.

G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu. Dolphinattack:
Inaudible voice commands. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS *17,
pages 103-117, 2017.

X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao,
and H. Zheng. Mirror mirror on the ceiling: Flexible wireless links for
data centers. SIGCOMM CCR, 42(4):443-454, Aug. 2012.

Y. Zhu, X. Zhou, Z. Zhang, L. Zhou, A. Vahdat, B. Y. Zhao, and
H. Zheng. Cutting the cord: A robust wireless facilities network for
data centers. In Proc. of MobiCom ’14, MobiCom 14, pages 581-592,
2014.

https://goo.gl/VjqqHZ
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.ietf.org/internet-drafts/draft-wu-t2trg-network-telemetry-00.txt
http://www.ietf.org/internet-drafts/draft-wu-t2trg-network-telemetry-00.txt

	Abstract
	1 Introduction
	2 Related work
	3 Testbed
	4 State Processing
	5 Music-Defined Telemetry
	6 Traffic Engineering
	7 Server Fan Failure Detection
	8 Conclusion
	9 Acknowledgement
	References

