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Abstract
In the ongoing cloudification of 5G, software network func-
tions (NFs) are replacing fixed-function network hardware,
allowing 5G network operators to leverage the benefits of
cloud computing. The migration of NFs and their man-
agement to the cloud causes 5G traffic to traverse an op-
erator’s wide-area network (WAN) to the cloud WAN that
hosts the datacenters (DCs) running 5G NFs and applica-
tions. However, achieving end-to-end performance for 5G
traffic across two WANs is hard. Placing 5G flows across
two WANs with different performance and reliability char-
acteristics, edge and DC resource constraints, and interfer-
ence from other flows is different and more challenging than
single-WAN traffic engineering. We address this challenge
and show that orchestrating paths across a multi-WAN over-
lay1 allows us to achieve average 13% more throughput, 15%
less RTT, 45% less jitter, or reduce average loss from 0.06%
to under 0.001%. We implement our multi-WAN 5G flow
placement in a scalable optimization prototype that allocates
26%–45% more bytes on the network than greedy baselines
while also satisfying the service demands of more flows.

1 Introduction

The majority of 5G access networks today use legacy tele-
com equipment and architecture. The next generation of
5G is designed to deliver superior Quality-of-Service (QoS)
through a combination of new frequency bands, new radio
technology, and the cloudification of telecom network func-
tions (NFs). These innovations are expected to revolution-
ize 5G and subsequent generations of access networks. In
this work we focus on the implications of improved QoS and
cloudification of access on wide-area networking (WAN).

As part of the cloudification of 5G, monolithic and propri-
etary hardware implementations of mobile wireless NFs are
evolving into disaggregated software-based NFs that run on
commodity off-the-shelf compute [79]. This disaggregation
allows 5G operators to deploy their virtualized radio access
networks (vRAN) on edge compute close to end users, and
packet cores in datacenters (DCs) [56, 61].

Cloudification is driving performance-sensitive inter-
domain traffic onto cloud WANs. For instance, traffic from
user equipment (UEs) traverses a 5G operator’s WAN to a
cloud WAN to reach 5G Core NFs and applications hosted

1OTTER topology release: https://OTTER-5GWAN.github.io/

in the cloud [56, 61]. The burden of providing QoS to this
traffic is now shared between two WANs: the 5G operator’s
WAN and the cloud WAN. However, existing traffic manage-
ment mechanisms lack the ability to orchestrate paths shared
between two WANs. In fact, 5G networks are already bottle-
necked on WAN performance [91], and this will get worse
as the upcoming 5G New Radio (5G NR) unlocks ultra-low
latency and high-bandwidth radio modes.

Improving the performance of inter-domain 5G traffic is
challenging for three main reasons. First, cloudified access
traffic is destined to cloud DCs that host 5G NFs and appli-
cations. The location of these 5G services in the cloud is
itself dynamic [33, 80] and conditional on the availability of
compute resources, making it hard to achieve performance-
optimal routing. Second, the primary mechanism to achieve
network performance goals in WANs today is intra-domain
traffic engineering (TE) [39, 41, 44] which does not capture
inter-domain route performance goals or fine-grained service
objectives of 5G traffic. Third, the dynamic nature of 5G traf-
fic requires on-demand flow placement, which is not achiev-
able by traditional TE mechanisms that operate on periodic
(e.g., 5 minute) allocation intervals.

We develop OTTER (Overlay Traffic Transport and Effi-
cient Resource allocation), a system that provides efficient,
on-demand transport across operator and cloud WANs for
5G traffic with differing QoS needs. It uses a multi-WAN
overlay to co-optimize the placement of 5G NFs and appli-
cations, and the network paths of 5G traffic. OTTER dynami-
cally computes optimal routes for multiple performance met-
rics and implements them using scalable forwarding mecha-
nisms involving VMs and cloud routing gateways. OTTER
is cloud-agnostic, allowing operators to deploy it on cloud
providers of their choice.

Our contributions. OTTER makes two key contributions.
First, it develops an efficient algorithm for allocating net-
work and compute resources to 5G demands across opera-
tor and cloud WANs. This algorithm forms the core of OT-
TER’s multi-WAN SDN (Software Defined Networking) con-
troller. Second, OTTER implements the optimal routing and
compute placement strategy of the controller using a novel
multi-WAN forwarding mechanism. We develop the multi-
WAN forwarding mechanism as part of the OTTER Orches-
trator, which programmatically creates multi-WAN overlay
networks with fine-grained routing policies for operators to
deploy their 5G NFs.
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We design OTTER with the observation that the operator
and cloud have newly aligned economic incentives for 5G,
as their business relationship goes beyond peering to also in-
clude SaaS and compute. The OTTER Orchestrator scales
to country-wide sizes of large operators by leveraging cloud-
native support. The OTTER Optimizer dynamically places
both compute and network workloads on multi-WAN over-
lays, for multiple traffic classes simultaneously.

Results. OTTER’s path orchestration across two commer-
cial WANs outperforms both public paths as well as topolo-
gies designed for enterprise-grade privacy and security. Our
deployment topology scaled out to the continental US shows
13% higher throughput on average, with a best case of 136%
higher, which can be 6-10 Gbps more. For flows that care
about round trip time (RTT), we achieve 15% average re-
duction, up to 42 ms less. Jitter-sensitive flows can expect
an average reduction of 45% and loss is 0.06% less on av-
erage. OTTER’s on-demand allocation outperforms greedy
baselines by up to 26-45% in allocated bytes (the amount of
demand that is satisfied), and comes close to what an infeasi-
ble, infinitely-fast optimizer can achieve.

2 Cloudification of Access

Traditionally, vendors have implemented cellular technology
on monolithic and proprietary hardware. However, 5G cel-
lular networks are being re-architected using SDN and NF
virtualization (NFV) [9]. This new architecture enables op-
erators to scale up and out NFs on statistically multiplexed
compute at operator edge sites (at or near cellular base sta-
tions and mobile switching centers), cloud edge sites (at host-
ing centers or peering points), and cloud DCs [55]. The use
of the same compute management plane across all three al-
lows NFs and interactive applications (e.g., AR/VR) to be
deployed flexibly, as user demand dictates. This allows oper-
ators to unlock the elasticity and efficiency of cloud comput-
ing. This convergence of access networks and hyperscalers
is known as the cloudification of 5G [27, 64, 65].

2.1 Implications for WANs

Performance-sensitive demands over multiple WANs.
The deployment of 5G applications and NFs on the cloud
puts the cloud WAN on the critical path of 5G traffic that
originates in the operator WAN, as shown in Figure 1. Ex-
tremely performance-sensitive NFs, such as RAN (Radio Ac-
cess Network) NFs are hosted in operator far edges [37, 64],
close to cell sites. Other NFs, such as the 5G Core, are hosted
in the cloud, in its edges and/or DCs. For example, Nokia’s
5G Core runs on the AWS cloud [61], Microsoft’s 5G Core
runs on both on-prem servers and Azure DCs [56], and its
voicemail NF is hosted on Azure DCs [52]. Multiple op-
erators have already moved parts of their 5G infrastructure

(a) Operator WAN (b) Cloud WAN
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Figure 1: A simplified example of a 5G network

to the public cloud. AT&T is using Azure [8, 60]. Verizon
is using AWS [12], leveraging multiple cloud technologies
including Amazon EKS, AWS Wavelength, and HashiCorp
Consul. The operator and cloud WANs peer [69] directly in
multiple locations. An edge or DC can serve traffic flows
from operator cell sites depending on where the destination
NF or application is hosted [55]. Applications may include
operator applications such as phone storage backup, private
enterprise applications such as industrial AR/VR, and con-
sumer applications such as game streaming.

Heterogenous network demands. 5G NFs have differ-
ent performance requirements. For example, some NFs in
the vRAN have stringent RTT, loss, and jitter requirements,
while others such as UPF (User Plane Function) in the 5G
Core need high throughput, and voicemail is performance-
insensitive. Furthermore, upcoming releases such as 5G NR
enable new applications, each with diverse performance re-
quirements. For example, interactive AR/VR requires sub-
20 ms network RTT for acceptable user experience [79, 91],
beyond 4K video streaming needs 100+ Mbps throughput,
and remote surgery demands high reliability. The 5G spec-
ification supports these diverse requirements through multi-
ple radio-layer modes [65, 67, 79, 84], including: (1) Ultra-
reliable low latency communication (URLLC) with ∼1 ms
latency and 99.999% reliability, (2) Enhanced mobile broad-
band (eMBB) with multi-Gbps data rates, and (3) Massive
machine-type communication (mMTC) for ultra-low energy
communication at scales of up to 1 million nodes per KM2.

Compute selection and routing decisions jointly matter.
Placement of applications and NFs on compute that is near
vs. far from the user [73], and the choice of network routes
between users and this compute both impact performance.
While operator edges are closer to users (few ms away) and
hence are an ideal target in which to place highly responsive
workloads (e.g., vRAN), they have very limited compute due
to physical space and power constraints at cellular base sta-
tions and mobile switching centers [74]. On the other ex-
treme, the DC is furthest away (tens to hundred ms away)
but has far more available compute.

Traditional selection techniques, such as those in CDNs
(Content Delivery Networks), fall significantly short here.
Directing all traffic from an entire subnet or LDNS (local
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Figure 2: Sub-optimal routing for independent WANs.

DNS) coverage area to a single destination leads to undif-
ferentiated performance for multiple flows with different re-
quirements. Similar to DNS, the 5G NRF [33,80] (NF Repos-
itory Function) maintains profiles of available instances of
NFs, and provides discovery and load balancing. However, it
is not network-aware and only considers compute load. The
problem is further exacerbated by the use of SFC (Service
Function Chaining) [20] in 5G, where instances of different
NFs are dynamically chained together to serve a request.

Picking a destination for a network demand based on com-
pute capacity alone can lead to poor E2E performance. Pick-
ing a destination for a network demand based on network
performance alone can lead to overloaded compute. Per-
formance studies of existing 5G networks [91] have already
found that "the untamed latency in the wireline paths, which
is beyond mobile carriers’ control, may neutralize 5G’s la-
tency advantage" and argue that "the wireline paths, upper-
layer protocols, computing and radio hardware architecture
need to co-evolve with 5G."

Need for multi-WAN coordination. Cloudification forces
operators and clouds to share responsibility for tight perfor-
mance guarantees of 5G workloads. Individual routing and
compute placement decisions leads to sub-optimal perfor-
mance. Figure 2 shows a latency sensitive flow traversing
two WANs from source R4 to destination R6. Each link has
an associated latency. The operator chooses the best egress
point-of-presence (PoP) R3 and path R4R3 to R3 to minimize
RTT on its network. The cloud routes traffic from R8 to R6
following the optimal RTT path, resulting in the E2E path P1.
However, a more efficient path P2 exists. We show in §7 that
decision making across both the cloud and operator unlocks
such performance improvements.

Given the multitude of 5G networks across the world, mul-
tiple cloud providers, and dynamic nature of traffic and oper-
ational WANs, manual coordination to address performance
problems as they appear does not scale.

New incentives for multi-WAN co-operation. Historically,
it has been challenging to achieve collaborative routing be-
yond traditional peering agreements on the Internet. How-
ever, the cloudification of access has aligned the economic
incentives of cloud and operator networks. The operator is
not only selling access to end users to the cloud, it is now
also a customer of the cloud for hosting 5G applications and
NFs. There is a shared responsibility to manage compute and

network between the two WANs for 5G demands.

3 OTTER

Prior empirical work [91] has shown that as 5G performance
over-the-air has improved, WANs have become the bottle-
neck. We tackle this problem by placing heterogenous per-
formance demands on the most appropriate compute and net-
work paths across operator and cloud WANs. We refer to
this as the multi-WAN flow placement problem, and it re-
quires two core capabilities — the ability to direct a flow to a
specific compute endpoint over a specific network path, and
the ability to calculate that optimal path and endpoint.

3.1 Design Goals
We design OTTER with the following goals:

Co-exist with non-5G WAN traffic. 5G traffic will share
operational WANs that serve existing customers. For exam-
ple, operator WANs already provide wireline connectivity to
consumers or eyeballs. Cloud WANs carry enterprise and
consumer workloads. Moreover, both types of WANs op-
erate existing TE systems to engineer the capacity of their
network efficiently [11,25,26,39,41,89]. However, both op-
erator and cloud TE systems aim to achieve network welfare
goals such as high utilization or bandwidth fairness [39, 41],
rather than optimizing for individual service objectives. In-
stead of overhauling existing TE systems in cloud and oper-
ator WANs, we design OTTER to be an overlay that operates
in a layer of abstraction above existing WAN TE.

Dynamic flow placement. This overlay design choice fur-
ther allows OTTER to place 5G flows on network paths and
compute endpoints on-demand. In contrast, existing TE and
other optimizations operate on batched traffic demands by
periodically (e.g., every 5 minutes) computing flow alloca-
tions from a predicted traffic matrix [39, 41], or running a
single optimizer instance for a single input demand [40]. A
broker [39] enforces those periodic allocations by squelching
flows that exceed them. While existing TE will continue to
run on each WAN separately, OTTER can dynamically place
flows without being subject to periodic allocations nor requir-
ing bandwidth brokers in 5G deployments.

Support multiple, fine-grained service objectives. To-
day’s WAN TE systems provide service differentiation using
only a small number of priority classes (e.g., high priority vs.
low priority) [10, 39]. Such few classes are insufficient to
express the more complex and fine-grained objectives of 5G
traffic. These coarse-grained priority classes can fail to cap-
ture the demands of lower priority flows, even when there
exists an allocation that maps all flows to acceptable paths.
Consider a simple example in Figure 3, where each link can
carry at most one flow. Flow FA has high priority with a
latency requirement of 20 ms, and flow FB has low priority
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Figure 3: Two flow allocation strategies

with a throughput requirement of 10 Gbps. On the left, we
show the allocation where flows are assigned in strict prior-
ity order, preferring shorter paths—this is how modern TE
systems like OneWAN [45] and SWAN [39] operate. FA will
be assigned first to the top path while FB will be assigned to
the remaining bottom path and fall short of its throughput re-
quirement. On the right, we show an alternate allocation that
can map both flows to paths that meet their service demands.
However, it is not trivial to find such an allocation at the scale
of hundreds of endpoints and thousands of flows, each with
their own performance demands across a variety of metrics.

Take inter-domain routing protocols as a given. Inter-
WAN routing leads to sub-optimal E2E routes due to lim-
ited information disclosure and different goals between
WANs [47, 48]. While prior work has shown that ASes can
exchange information to produce E2E optimal routes, such
negotiation entails heavyweight communication overheads
that may not be practical [47, 48]. In the context of 5G, this
overhead is further exacerbated by numerous traffic flows,
each with widely varying objectives. So, we design OTTER
without requiring changes to inter-domain routing protocols,
policies, and implementations.

Not require private WAN data. While sharing intra-WAN
topologies could lead to better multi-WAN paths, ASes have
economic incentives to limit such visibility [47, 48, 75, 81].
5G cloudification presents a unique opportunity for efficient
cross-domain routing without sharing such private data. The
operator, as a customer of the cloud, owns the workloads
deployed on VMs in cloud edges, DCs, and operator edges.
The cloud provides the control plane for managing bare
metal at these locations, such as provisioning VMs and es-
tablishing connectivity. Thus both the operator and the cloud
have visibility into network performance at an overlay layer
between all compute locations. OTTER uses this visibility to
make informed flow and compute placement. We show that
the operator can deploy and run OTTER across both WANs,
without access to private data or capabilities, and still pro-
vide significant performance improvements.

Multi-cloud support with open interfaces. 5G operators
want to avoid cloud-lock in and deploy their NFs to one or
more cloud providers of their choice. To achieve this, we
design OTTER as a multi-cloud network overlay across oper-
ator and cloud WANs. OTTER uses publicly available VMs
as nodes in the overlay, and a variety of public cloud NFs for

operator WAN cloud WAN

sources

operator edge

cloud edge

cloud DC

Controller
Optimizer Orchestrator

Measurement
Coordinator

Profile
Database

Network
APIs

flow allocations

cloud resource
deployments

performance
measurements

5G flows

Figure 4: Overview of OTTER

routing between the nodes. This allows operators to use OT-
TER in multi-cloud deployments, without requiring private
or special privileges from an underlying cloud.

3.2 OTTER Overview
OTTER places flows in a multi-WAN environment to satisfy
their service demands. It does so by co-optimizing which
5G application / NF compute will serve the flow, and the
route that flow will take to it. Figure 4 shows OTTER’s ar-
chitecture consisting of the Controller and Orchestrator. The
Controller accepts flow demands to 5G NFs and applications
using APIs [28, 34, 53, 57]. These "Quality on Demand"
APIs [3] allow an application to create a session by issuing an
HTTP POST to the /sessions API, providing flow identifiers
(IP addresses, port ranges, device phone number, etc.) and a
QoS profile that best matches the application needs (see the
"quality-on-demand v0.11.1" API on Swaggger [3]). Such
standardized APIs have been implemented by 5G operators
(see the implementations by Deutsche Telekom, Orange, and
Spry Fox Networks posted on GitHub [3]) and by clouds that
offer to host 5G services [15]. In addition to allowing appli-
cation developers to specify their 5G flow needs, these APIs
allow for termination of a session, extending a session, and
getting notified when the requested QoS cannot be fulfilled.
A UE that disconnects and reconnects, or incurs an inter-RAT
(Radio Access Technology) handover, can create a new ses-
sion with this API.

The Controller allocates compute to meet these perfor-
mance requirements within the limits of compute availability
on edges and DCs. The Controller calculates the most appro-
priate network paths to the allocated compute. Unlike TE
systems, OTTER relies on available compute capacity at des-
tination sites, as well as periodic measurements of network
paths that it makes. This not only allows OTTER to route
flows along alternate paths, but also to alternate destinations.
The Orchestrator manages cloud resources and implements
the forwarding mechanism to steer traffic along routes com-
puted by the Controller. It provisions compute as per the
Controller’s optimal placement.

While similar challenges can be faced by other applica-
tions across WANs, OTTER is designed to serve 5G de-
ployments. The business alignment between "eyeball" net-
works and cloud networks, where 5G deployments are hosted
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across both, drives the necessary incentive to orchestrate
both WANs. The diversity of 5G applications requires a de-
sign that supports multiple classes of traffic, not just bulk
traffic [40]. End-user flows have to be placed in real time,
not at traditional, periodic TE intervals. OTTER leverages
APIs [28,34,53,57] already deployed by 5G providers to ac-
cept these application demands, where such APIs have not
been deployed at scale for other applications nor networks.
Finally, we design OTTER as an overlay without forcing one
WAN to have administrative control nor require use of pri-
vate capabilities – this design hence does not preclude a
cloud from supporting multiple 5G operators, and a 5G oper-
ator from relying on multiple clouds.

4 OTTER Controller

The OTTER Controller maps traffic demands to network
paths and compute resources. It does so while maximizing
the allocated traffic and minimizing the degree to which 5G
application-specific service requirements are violated. The
resulting mapping of flows to destination compute sites and
the network paths to reach them is an input to the OTTER Or-
chestrator. It informs the Orchestrator at which of the avail-
able edge sites or DCs to terminate 5G flows and which net-
work paths to use. In this section, we formalize this problem,
referred to as the 5G multi-WAN flow placement problem,
explain the constraints on the Optimizer, and describe tech-
niques used to ensure its scalability.

The Optimizer takes as input the set of paths P that are
available in the multi-WAN network. Each path p ∈ P is rep-
resented by the tuple (s,d,L,σ)p, where sp is the source, dp
is the destination, Lp is the set of links used by the path, and
σp is a vector of performance metrics for path p. σm

p refers to
the value of metric m for path p. For example, the RTT, jitter,
and packet loss of path p are represented by σrtt

p ,σ jit
p ,σloss

p . L
is the set of links in the network, and each link l ∈ L has ca-
pacity cl . Let Pl be the set of paths that share a link l, and Pd
be the set of paths that share a destination d.

The Optimizer takes as input a set of 5G flows F that need
to be allocated. Each flow f ∈ F is represented by the tuple
(s,D,D,bw,r) f . s f is the source of the demand. D f is the
set of destinations (specific edges & DCs) that can serve the
flow. D f represents the service demands of the flow with Dm

f
giving the demand for metric m. bw f is the requested band-
width. r f is a vector of destination resource requirements of
the flow – compute, memory, and storage. We write rπ

f to
refer to the requirements of flow f with respect to resource
type π. Unlike TE, an OTTER flow is not limited to a single
destination. Rather, we leverage the agility of the cloud to
place compute resources for serving a 5G application or NF
across multiple destinations. This allows OTTER to further
optimize path performance by adjusting the destinations of
flows. Compared to resource-constrained edge sites, a desti-
nation d that is a DC has ≈ ∞ capacity cπ

d . For scalability, in-

dividual flows with the same source, destination set, service
demands, and resource requirements are treated as part of a
single “flow aggregate” for the Optimizer to allocate. The
Optimizer solves the flow placement problem such that all
flows within the same flow aggregate are routed in the same
way and to the same destination.

Modeling service demands. We encode the service demand
of a flow that is obtained from operator APIs (§ 3.2) as a vec-
tor of demand functions D f . A demand function Dm

f maps
a flow’s performance expectation, i.e., what the flow expects
to achieve for a given allocation, to a tolerance coefficient
Dm

f (σ
m
p ) ∈ (0,1]. The tolerance coefficient is a measure of

how good the path is for a flow. For example, an applica-
tion may consider a path RTT under 100 ms acceptable, over
200 ms unacceptable, and linearly decrease its preference for
a path between 100 and 200 ms. In this case, the Optimizer
computes the tolerance coefficient to be 1 for all paths with
an RTT under 100 ms, ε for all paths greater than 200 ms, and
a value inversely proportional to the RTT for paths between
100 and 200 ms:

Drtt
f (σrtt

p ) =


1, if σrtt

p ≤ 100
− 1

100 σrtt
p +2, if 100 < σrtt

p ≤ 200
ε, if σrtt

p > 200


The Optimizer’s goal is to allocate demands such that the

degree of satisfaction (tolerance coefficients) is maximized.
All tolerance coefficients are constant, allowing the objec-
tive function to be linear and the optimization problem to
be a linear program (LP). The use of demand functions al-
lows the Optimizer to scale over numerous path metrics and
performance demands, as well as future-proof it for new ap-
plications that have arbitrary service demands.

Modeling resource requirements. Each flow specifies a re-
source requirement vector r f . Each element represents com-
pute in vCPUs, RAM, and disk storage needed to serve the
5G workload. While we focus on those three resources, the
vector can be expanded and compared component-wise to
the resource capacities of destination sites.

Decision variables. The Optimizer assigns network flows to
paths in P and compute resources to destination sites in D.
We have two decision variables: x f ,p, the amount of band-
width of flow f assigned to path p, and yπ

f ,d , the amount
of resources of type π for flow f allocated at destination d.
OTTER co-optimizes the flow allocation and the destination
placement. See Table 1 for a summary of variables.

Objective function. The Optimizer aims to assign network
flows to multi-WAN paths such that as much traffic is allo-
cated as possible while still satisfying performance demands.
The cost of a single flow assignment is the product of its al-
located bytes and the overall tolerance coefficient summed
over all performance metrics. To prevent bias towards large
flows, we normalize this cost by the requested bandwidth of
the flow bw f . The objective function is as follows:
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Inputs

P paths in network
sp,dp source and destination of path p
Lp links used by path p
σm

p performance metric m for path p
L links in network
cl capacity of link l
F flows to allocate
s f ,D f source and destination set of flow f
Dm

f path performance demands for metric m of flow f
bw f requested bandwidth of flow f
rπ

f resource requirements of flow f for resource π
cπ

d resource capacities of destination d for resource π

Outputs

x f ,p amount of flow f assigned to path p
yπ

f ,d amount of resource π for flow f assigned to destination d

Table 1: Symbol table for the OTTER optimizer.

maximize ∑ f∈F ∑p∈P
( 1

bw f
x f ,p ·∑m Dm

f (σ
m
p )
)

subject to
x f ,p ≥ 0 ∀ f , p (c1)

∑p∈P x f ,p ≤ bw f ∀ f (c2)
∑ f∈F ∑p∈Pl

x f ,p ≤ cl ∀l (c3)
∑ f∈F yπ

f ,d ≤ cπ
d ∀d,π (c4)

∑d∈D f yπ
f ,d = rπ

f ∗
(

∑p∈Pd
x f ,p

)
/bw f ∀ f ,π (c5)

Table 2: OTTER optimizer formulation.

argmax∑
f ,p

(
x f ,p · ∑

m∈{rtt, jit,loss,bw}
Dm

f (σ
m
p )
)
/bw f

We note that our objective function does not inherently prior-
itize one metric over another. Rather, applications can indi-
cate priority through the demand functions.

Constraints. Table 2 summarizes the constraints in OTTER’s
optimization. Constraint c1 ensures that the total allocated
flow is non-negative. c2 and c3 ensure that the allocated
flows are bounded by their requested bandwidth as well as
the bottleneck capacity of the paths. Destination sites have
resource constraints that limit how many flows can map to
them, and c4 prevents overload. Constraint c5 requires that
the proportion of resources assigned to a flow at a destina-
tion is equal to the proportion of the amount of bandwidth
allocated to the flow at the same destination.

On-demand 5G flow allocation. Unlike TE systems which
allocate flows periodically (e.g., every 5 minutes) for pre-
dicted traffic demands, the OTTER Controller must perform
on-demand flow placement. This difference arises due to
the dynamic and unpredictable nature of 5G traffic [24] com-
pared to typical WAN workloads. Unfortunately, re-running
the Optimizer too frequently incurs a large delay. While the
Optimizer computes newly optimal flow allocations, stale
routes remain in-use, potentially leading to service demand
violations [93]. To handle this, the Controller implements
a greedy heuristic that approximates the optimal (i.e., invok-

ing the Optimizer on every new flow) configuration. It greed-
ily allocates flows to available paths and destinations to pro-
vide the best demand satisfaction, while adhering to resource
constraints. The Controller then periodically runs the full
Optimizer in the background to optimally place new flows
and those that were greedily assigned since the previous call
to the Optimizer. The Controller can then shift those flows
to achieve a globally optimal allocation, or it can pin flows
to specific paths or destinations to avoid packet re-ordering.
While shifting flows could result in an individual flow expe-
riencing lower service demand satisfaction compared to its
initial greedy allocation, reallocation still improves overall
satisfaction across more flows, as shown in §7.

Computational complexity of OTTER. OTTER’s opti-
mizer is a linear program. Off-the-shelf optimization solvers
implement polynomial time algorithms to solve linear pro-
grams, making it possible to solve OTTER’s optimization
quickly. While linear programs are quick to solve in practice,
increasing the size of the problem can increase the run time
of the solver. OTTER has two ways of dealing with high run
times. First, OTTER reduces the set of possible destinations
for each flow to a set of size n prior to solving the optimiza-
tion. We estimate the n “best” destination sites using a flow’s
service demands (Dm

f ) to rank candidate destinations by pref-
erence. This effectively reduces the number of variables in
the linear program. Second, depending on the size of the lin-
ear program, OTTER can run the full optimization at longer
periodic intervals (e.g., ten minutes) since the greedy flow
allocation can assign flows to paths without waiting for the
next interval. We evaluate the performance of greedy flow al-
location between consecutive runs of the Optimizer, as well
as the Optimizer, in detail in §7.

5 OTTER Orchestrator

The Orchestrator includes the forwarding mechanism neces-
sary to steer traffic along routes computed by the Controller
(§4). It also manages compute as per the Controller’s opti-
mal placement. We design the Orchestrator as a multi-WAN
overlay on a cloud WAN and an operator WAN. To evaluate
OTTER without impacting an operational 5G network, we
substitute the operator WAN with GCP (Google Cloud Plat-
form). Figure 5 shows one small deployment of OTTER, and
Figure 19 in Appendix A shows a larger one. The Orches-
trator uses only existing, native cloud functionality, which
satisfies our design goal of not requiring private WAN data
(§3).

Connectivity in the OTTER Orchestrator overlay. We
host multiple VMs in each Azure region to represent 5G NF
and application servers. VMs in GCP serve as 5G cell sites
with far edges, while virtual private network (VPN) gateways
behave like 5G near edge sites. We create private subnets
in each GCP region and virtual private cloud (VPC) peer-
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Figure 5: OTTER Orchestrator’s multi-WAN topology.

ing connections in full-mesh between GCP regions. We use
virtual network (VNet) peering between clusters of VMs in
different regions to connect them to each other and to VPN
gateways. Given that much of the 5G infrastructure, includ-
ing cell sites and NFs, use private IP address ranges to protect
communication, VPN tunnels are necessary to establish pri-
vate connectivity among them. We have configured the VPN
gateways to allow transit with the 5G operator WAN where
both clouds have regional DCs and underlying peering (see
Appendix A).

Forwarding in the OTTER Orchestrator overlay. The OT-
TER Orchestrator leverages native functionality in each cloud
to achieve high forwarding performance, ease of scale, and
lower deployment complexity. To control the path that a 5G
flow takes in the overlay, we use a combination of route ta-
bles with user-defined routes (UDRs) and choice of multiple
VNets in the destination region, something that both GCP
and Azure support without requiring the customer to deploy
their own BGP speakers and packet forwarders. Other design
choices, such as using SNAT and DNAT with VPN gateways
and firewalls [51], or MP-TCP on source and destination
VMs, incur different tradeoffs in flexibility and overheads.
We configure advanced parameters on VNet peering and net-
work firewalls to allow VMs in one region to use a VPN
gateway in another and allow transit traffic between regions.
Each cloud component supports scale-up and scale-out, al-
lowing the entire topology to easily cover the continental US,
for example, without any code changes to individual compo-
nents. We use symmetric paths for a flow but can easily use
different paths in each direction. The use of one system to
identify, manage, and use routes across WANs allows us to
satisfy the need for multi-WAN coordination (§ 2).

Secure multi-WAN routing. We use private VNets to host
5G cell sites, edge sites, and NFs. We use VNet peering to al-
low only authorized traffic to transit between VNets. We use
VPN gateways to enforce encryption when transiting WANs.
Our design choices were inspired by product demonstrations
from industry 5G NF providers [61].

Extensible multi-WAN topology. This design allows both
scale and flexibility. Given an arbitrary source in a GCP re-
gion and a destination in an Azure region, it can use any VPN
connection and any intermediate Azure and/or GCP region to

send and receive traffic. We achieve this through a combina-
tion of VPN connections, VNet peering, and selective route
announcements. We trivially increase inter-WAN forwarding
throughput by scaling out VPN gateways and tunnels.

6 System Implementation

We have implemented the entire OTTER system shown in
Figure 4 to operate on top of Azure and GCP, with no spe-
cial support from either underlying cloud. The Orchestra-
tor is built with HashiCorp’s Terraform [86]. Our evaluation
topology (available in an anonymous repository 1), listed in
Table 3 and described in §7.1, is built in ∼4,100 LoC of HCL
(HashiCorp Configuration Language), with ∼2,600 LoC for
module deployments, ∼600 LoC for GCP resource declara-
tions, and ∼900 LoC for Azure resource declarations.

We implemented the Measurement Coordinator in ∼1,200
LoC in C#. It uses the Azure and GCP SDKs to automate pe-
riodic execution of measurement tools for path bandwidth,
RTT, jitter, and loss. We use iPerf3 [23] to measure through-
put, configured to use TCP CUBIC with 60 parallel connec-
tions, 2 seconds of warm up, and 5 seconds of measurement.
For packet loss, we use iPerf3 in UDP mode. For RTT and
jitter, we use sockperf [49]. We use round-trip values, and
jitter is calculated as the standard deviation of RTT.

The Measurement Coordinator analyzes the output of the
Orchestrator’s Terraform execution to determine the deploy-
ment topology and the names and IP addresses of its compo-
nents, including source and destination VMs. It then creates
a non-overlapping schedule of measurements. The output
of the measurement tools is parsed and converted to JSON.
That JSON is then inserted as a new document record into an
Azure Cosmos DB NoSQL database [54].

The Optimizer issues simple SQL queries on that database
to obtain sliding window values of median throughput, RTT,
jitter, and loss for all paths. 5G flow requirements are mod-
eled from a subset of application profiles in the 3GPP stan-
dard [79], which we describe in §7.2. However, we expect
to integrate with network APIs [28, 34] such as Azure Pro-
grammable Connectivity [53, 57] that allow 5G applications
to specify flow QoS requirements. We have implemented the
Optimizer using the Gurobi [35] solver. The Optimizer is an
LP of ∼500 LoC. We run our implementation on a VM with
a 16 core 3GHz CPU and 48 GB of memory.

7 Evaluation

We evaluate OTTER in two ways. First, in §7.1, we demon-
strate the value of orchestrating paths across two WANs,
compared to the default path from traditional Internet rout-
ing. Second, in §7.2, we evaluate how OTTER’s optimiza-
tion algorithm performs under a wide variety of situations at
scale, and in comparison to alternative algorithms.
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Cloud Element Deployment strategy Total

GCP

regions cover US 8
VPC 1 per region 8
subnet 1 per region 8
cloud router 1 per region 8
VPC peering full mesh 56
32 core VM [31] 1 per VPC 8
classic VPN GW 4 per VPC 32
cloud VPN tunnel 2 per VPN GW 64

Azure

regions cover US 8
VpnGw5 GW [14] 1 per region 8
VPN GW interface 8 per VPN GW 64
32 core VM [13] 8 per region 64
VNet 1 per VM and VPN GW 72
VNet peering each VPN GW VNet to VM VNet 64

Table 3: Scale of OTTER topology across US regions.

7.1 OTTER Orchestrator Evaluation

§5 briefly describes how OTTER’s Orchestrator works, with
a secure, private, scalable design that allows flexible path
selection to cater to multiple QoS requirements. We evaluate
this orchestration at scale on two commercial cloud WANs.

We have scaled out the topology shown in Figure 5 to
cover the US and support a large number of flows. Table 3
lists how many of the main components we use, though there
are many other sub-components that we do not list, such as
VM drives, NICs, custom routes, firewalls, and security rules.
We use the biggest VPN GWs and multiple connections. We
create VPN connections between the two clouds in nearby
regions, listed in Appendix A. This topology is sized simi-
larly to that of large 5G operators [21]. We use the largest
VMs that have sufficient CPU and network bandwidth such
that the VMs themselves are not bottlenecks in any of our
measurements. We validate this through intra-cloud testing,
where for example we achieve >25Gbps throughput between
any two VMs in GCP in our topology, more than what is
possible between two VMs across the two clouds.

We have run experiments on different weekdays and ob-
served qualitatively similar results. For brevity, we show re-
sults from a 24 hour period starting on 09 Feb 2023 13:00PM
(PT), where we repeatedly measure 83 = 512 paths over 20
times. When comparing any two paths between the same
source on GCP and the same destination on Azure, we only
consider measurements immediately adjacent in time to each
other. This ensures an “apples to apples” comparison, since
comparing a path at 2am with one at 2pm is not useful for
real-time demands.

Figures 6a, 6b, 6c, and 6d show the network performance
improvements that the OTTER Orchestrator is able to achieve.
Each horizontal bar corresponds to one of 64 unique source-
destination (Src-Dst) pairs, with the source in GCP and des-
tination in Azure. The bar on the right represents the median
performance observed for a Src-Dst pair when the OTTER Or-
chestrator is not invoked, i.e., the default path [32] that a flow
experiences when we do not specify which VPN connection

to use and do not force traffic through an intermediate region
(see Figure 5). The first bar on the left shows the median
improvement that the OTTER Orchestrator achieves for the
same Src-Dst pair when considering the best performing path
across all possible combinations of VPN connections and in-
termediate regions. This median is computed as follows: for
each round of measurements, we calculate the performance
improvement of OTTER orchestration over the default path,
and then use the median value across the ~20 rounds that
happen over 24 hours. The second bar on the left shows the
maximum improvement observed. The Src-Dst pairs in each
figure are sorted by median improvement.

For example, the bottom bar in Figure 6a shows that this
Src-Dst pair can achieve 14.1 Gbps, in the median across the
24 hour period, but the OTTER Orchestrator can improve that
by 4.4 Gbps to achieve 18.5 Gbps in the median, and in the
best case improves throughput to 21.1 Gbps. The bottom bar
in Figure 6b shows a Src-Dst pair with 83.2 ms median RTT,
but the OTTER Orchestrator can reduce that by 39.4 ms to
achieve 43.8 ms in the median, and in the best to 42.4 ms.

Consider one Src-Dst pair example in Figure 7. From
a source in GCP’s US West 3 region to a destination in
Azure’s South Central US region, 13.6 Gbps throughput and
40.6 ms RTT is the median performance, on the typical [32]
hot potato path, where traffic is handed off to Azure at the
nearest location in Azure’s West Central US region. OTTER
has two other paths between the same source and destination
that the Orchestrator can use with different RTT and through-
put tradeoffs. When sending traffic via GCP’s US South 1
region, the median RTT is significantly better at 35.0 ms, but
at a slight degradation in throughput (13.5 Gbps). Instead,
via GCP’s US West 4 and Azure’s West US 3 region, there is
significantly higher throughput of 19.4 Gbps, but at slightly
worse RTT of 42.8 ms. There is not one path with the best
throughput, RTT, jitter and loss—different paths have differ-
ent performance. OTTER is able to exploit the spectrum of
paths to send traffic along the appropriate path for a flow, us-
ing scalable mechanisms involving VPN tunnels, VNet peer-
ing, and user-defined routes (§5).

Appendix B has additional presentations of these experi-
mental results. We summarize our findings as:
• For flows prioritizing throughput, the OTTER Orches-

trator offers higher throughput than the underlying net-
works. On average, it is 13% higher and in the best case
136% higher. In some cases, the throughput increases
by 6-10 Gbps. The peak throughput OTTER achieves be-
tween two VMs across the clouds is >20 Gbps.

• For RTT, the average reduction is 15%, with a maximum
of 56%. In some cases this is a RTT reduction of 42 ms,
within the continental US.

• The average jitter reduction is 45%, with a maximum of
99%, which in some cases is a reduction of over 10 ms.

• Excluding some outliers, packet loss is reduced from
0.06% on average to less than 0.001%. In some cases
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Figure 6: Improvements that the OTTER Orchestrator achieves per Src-Dst pair for each of 4 performance metrics. Bars on
right show performance of default path, bars on left show median improvement and max improvement. Max improvements for
jitter and loss are excluded for clarity.

GCP us-west3 →
GCP us-south1 →
AZ southcentralus
35.0ms, 13.5Gbps

GCP us-west3 →
AZ westcentralus →
AZ southcentralus
40.6ms, 13.6Gbps

GCP us-west3 →
GCP us-west4 →
AZ westus3 →
AZ southcentralus
42.8ms, 19.4Gbps

Figure 7: Examples of improvements in performance OTTER
can achieve between the same Src-Dst pair.

the maximum reduction is more than 0.4%.
• Our scalable, secure, and private multi-WAN architecture

achieves higher throughput than a simple architecture of
VMs with public IPs. While some cloud components
such as VPN tunnels can slightly worsen RTT and jitter,
the OTTER Orchestrator compensates by finding better
paths, providing the highest throughput, lowest RTT, jit-
ter, or loss for any Src-Dst pair.

Prior work [40, 48, 91] has observed inefficiencies in the
default intra- and inter-WAN paths provided by existing net-
works. Here, we comprehensively identify what OTTER can
achieve across multiple objectives in the context of a de-
ployment topology that is secure, private, and scalable, and
achieves higher throughput than previously shown [40]. As
seen in many TE algorithms [39, 41], the primary objective
function is satisfying as much traffic demand as possible,
with a possible secondary objective of minimizing RTT. This
makes sense in a commercial WAN, where the cost of build-
ing and operating it has to be amortized over as much cus-
tomer demand as possible. In contrast, OTTER’s goal is to
provide best performance to individual flows, and as such
utilizes multiple paths that offer different QoS, without hav-
ing to scale to the TE demands of the underlying networks.
Further, OTTER utilizes virtual routing techniques (see §5),
to react to real-time performance changes without requiring
the underlying network infrastructure to issue route updates
and converge, forcing all traffic to use those routes.

7.2 OTTER Controller Evaluation

Setup. We evaluate the Controller on the same continental
US-wide, multi-WAN topology on which the Orchestrator is
evaluated (§5). In Appendix F, we also evaluate synthetic
smaller and larger topologies, including those that match the
scale of contemporary TE systems, and show qualitatively
similar results. To avoid limiting findings to specific network
performance values, we evaluate the Controller on a distribu-
tion of values listed in Table 4. Path attributes are sampled at
random from the distribution of measured path metrics in our
multi-WAN topology, while destination and flow attributes
are chosen uniformly at random from the specified range to
mimic 5G traffic [79].

Flows arrive according to a Poisson process with a mean
arrival rate. We evaluate multiple flow arrival rates as listed
in Table 4. We use 10 seconds as the mean flow duration,
and we show qualitatively similar results for varying dura-
tions in Appendix C. We randomly assign an application pro-
file to each flow and generate a demand function for each
performance metric using one of three function types: step,
linear, or rational, with inflection points in each function de-
rived from the guideline service demands in Table 5. Those
demands are based on 5G application profiles from the rel-
evant 3GPP standard [79], described in more detail in Ap-
pendix D. To account for flow diversity, we select inflection
points at random from within ±25% of the guideline metric.
We also evaluate the effect of assigning application profiles
from varying distributions based on RTT requirements, in-
stead of random assignments, and show qualitatively similar
results in Appendix E.

Heuristics. We implement several heuristics in the Con-
troller, with different levels of optimality, compute needs,
and impact on ongoing flows:
• GREEDY: Flows are allocated greedily in arrival order to

the best paths based on the tolerance coefficient.
• PER: Same as GREEDY, but the Optimizer also periodi-

cally runs to shift all active flows to optimal paths. While
the Optimizer is computing allocations, incoming flows
are allocated greedily.
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Topology value/range units

Num sources 8 #
Num destinations (DC) 2 #
Num destinations (edge) 6 #
Num paths per src/dst pair 8 #

Path Attributes min max avg std units

Throughput 4.0 20.8 13.7 1.6 Gbps
RTT (DC) 69.2 150.8 92.2 18.2 ms
RTT (edge) 3.2 34.6 24.8 7.2 ms
Jitter 0.008 38.0 0.62 1.38 ms
Loss 0.0 4.3 0.06 0.16 %

Destination Attributes value/range units

CPU capacity (edge) 128-4096 cores
Memory capacity (edge) 128-4096 GB
Storage capacity (edge) 1024-32768 GB

Flow Attributes value/range units

Flow arrival rate 20K-40K flows/s
Flow duration mean 10 s
Flow duration std 10 s
Application profile 1-8 index
Demand function {step, linear, rational} type
CPU requirement 1-128 #
Memory requirement 1-128 GB
Storage requirement 8-1024 GB

Table 4: Evaluation Parameters. Values are sampled at ran-
dom from the specified ranges. Path attribute values are ac-
tual measurements from our multi-WAN topology.

Application name Throughput Latency Jitter Loss
(Mbps) (ms) (ms) (rate)

Conversational Voice 0.3 100 - 10−2

Live Streaming Video 1.5 150 - 10−3

Buffered Streaming Video 15 300 - 10−6

MC-PTT Voice 1 75 - 10−2

Augmented Reality 20 10 - 10−6

Real-time Gaming 10 50 10 10−3

Remote Driving 1 5 - 10−4

Intelligent Transport 1 30 - 10−5

Table 5: Application profiles for flows (see Appendix D for
details).

• PER+PATHPIN: Same as PER, except RTT and jitter-
sensitive flows are pinned to their destinations and paths
and not shifted even if the Optimizer finds a better path.

• PER+DSTPIN: Same as PER, except RTT and jitter-
sensitive flows can be assigned to a new path without
changing the destination.

• OPT+PATHPIN: An unattainable version of
PER+PATHPIN that uses an infinitely fast optimizer.
This removes the need to greedily allocate during
optimizer compute time.

• OPT+DSTPIN: An unattainable version of PER+DSTPIN
that uses an infinitely fast optimizer.

• OPT: An unattainable version of PER that uses an in-
finitely fast optimizer, which invokes a re-optimization
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Figure 8: Average fraction of allocated bytes across all flows.
Error bars show min-max over multiple runs.

of the network on every flow arrival and can re-allocate
flows to optimal paths with no restrictions.

Traffic allocation. Figure 8 shows the average fraction of
bytes allocated across all flows for each allocation method
for varying flow arrival rates. We define allocated bytes for a
flow as the amount of requested bandwidth bw f successfully
allocated multiplied by its duration. We see that OTTER with
periodic re-optimizing (PER) always allocates more traffic
compared to the baseline GREEDY method, while still react-
ing quickly to on-demand flows. As expected, as the flow ar-
rival rate increases, the number of allocated bytes decreases
across all allocation methods. This is explained by the in-
crease in resource contention when more active flows are
present on networks of the same size with similar link and
destination capacities. We also see that PER+PATHPIN and
PER+DSTPIN on average allocate 26–45% more bytes than
GREEDY, and just 10% fewer bytes than their unattainable
optimal counterparts. In Appendix F, we scale to mean flow
arrival rates of up to 512K flows/s without observing a large
drop-off in gap-to-optimal performance.

For intuition into how the OTTER Controller allocates
flows, Figure 9 has a time series of the average fraction of
requested bandwidth that is successfully allocated by each
method. It shows results for a mean flow arrival rate of 40K
flows per second. Note that for instantaneous bandwidth allo-
cation, we do not weight the allocation by the size of the flow,
and only show the unweighted average across all flows at
each point in time. OTTER’s periodic re-optimizing methods
exhibit a sawtooth behavior, with a jump in allocated band-
width after each optimizer run and a steady decrease during
the solve time due to falling back to GREEDY allocation for
new flows. PER+PATHPIN and PER+DSTPIN provide a less
optimal solution after each Optimizer run due to pinning, as
shown by smaller sawtooths, but can run more frequently
since the additional constraints reduce solve time.

These results also show how OTTER’s Optimizer better
maps flows to suitable paths without starving flows that may
be considered “lower priority” in other schemes. While
GREEDY also uses our notion of tolerance when ranking
paths, it will greedily assign a flow to the best available path
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Figure 9: Average fraction of allocated bandwidth across all
flows over time.
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Figure 10: Service demand satisfaction for RTT, jitter, and
packet loss. Value of 1 means perfect satisfaction.

even if there are alternate paths with worse performance but
still just as satisfactory. The other allocation methods spread
flows across available paths instead of assigning them to a
single, attractive path, and those details are in Appendix G.

Service demand satisfaction. We now show that OTTER
meets the design goal of placing fine-grained flow service de-
mands. We choose a mean flow arrival rate of 40K flows/sec,
which is the most difficult workload we evaluate, to show a
lower bound on service demand satisfaction. All other pa-
rameters remain as in Table 4. For each flow, we compute its
average “satisfaction” for each performance metric over its
assigned paths, defined as the tolerance coefficient normal-
ized to the fraction of bytes successfully allocated.

Figure 10 shows flow satisfaction distribution for RTT,
jitter, and packet loss. Throughput satisfaction is the frac-
tion of bytes successfully allocated, previously shown in Fig-
ure 8. Across all three service metrics, OTTER’s periodic
re-optimizing methods map a similar fraction of flows to
paths with perfect satisfaction compared to GREEDY, but al-
locate far fewer flows to paths with extremely poor (<0.01)
satisfaction. For RTT, PER+PATHPIN and PER+DSTPIN
map approximately 47% of flows to paths with perfect
RTT satisfaction, while GREEDY does so for 41% of
flows. PER+PATHPIN and PER+DSTPIN allocate signifi-
cantly fewer flows to paths that are entirely unsatisfactory
(35% vs. 44%). Note that even with optimal allocation, OT-
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Figure 11: Impact of resource constraints on allocated bytes.

TER still assigns at least 10% of flows to paths with poor RTT
satisfaction (<0.01). Most of these flows belong to applica-
tion profiles with service demands that are extremely difficult
to meet alongside a large number of other flows.

Best heuristic. Of the four realistic heuristics, we choose
PER+PATHPIN for OTTER. It limits disruption of extremely
performance sensitive flows, while still offering high allo-
cated bytes and satisfaction.

Impact of edge resource constraints. In the disaggregated
5G network architecture, edge computing plays a central role
in meeting service demands. However, TE systems do not
account for the heterogenous availability of compute at edge
sites, and may over-subscribe flows to destinations.

To demonstrate the value of explicitly considering desti-
nation resource capacities when routing 5G flows, we mod-
ify OTTER’s Optimizer to ignore destination resource con-
straints (eliminating constraint c4 in Table 2). This effec-
tively gives all destinations infinite resource capacity. The
LP is restricted only by link capacities. While the uncon-
strained LP is seemingly able to allocate more bytes, the ac-
tual amount is much lower due to resource contention at des-
tination sites. To estimate the amount of traffic that can ac-
tually be serviced, we reduce allocated bytes from flows that
are assigned to over-subscribed destination sites. We follow
random priority when de-allocating, i.e., for each destination,
we repeatedly select a flow at random and decrease the num-
ber of bytes allocated until the resource limitations are met.
Figure 11 compares the effective fraction of bytes allocated
between OTTER using PER+PATHPIN with and without edge
resource constraints for different traffic loads. As we can
see, ignoring destination resource constraints in the Opti-
mizer formulation results in 23–50% fewer bytes allocated
than PER+PATHPIN. This shows that the added complexity
of integrating resource capacity constraints allows OTTER
to better map flows to destinations that have the capacity to
serve them, allowing more traffic to be supported.

8 Miscellany

Why does BGP not get in the way? Cellular network op-
erators tend to be large ISPs that directly peer with public
clouds in multiple locations. Our evaluation setup in §7 rep-
resents that, with both WANs directly peering and our use
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of VPN gateways at the overlay layer. Not only do we ex-
pect 5G traffic to flow over direct connections, we expect 5G
cloudification to spur operators to increase the quantity of
peering. This has two implications for OTTER. First, many
of the oddities of BGP in the wild do not apply here, where
intermediate ASes enforce their policies between source and
destination ASes. Second, we expect to see even more diver-
sity of inter-domain paths that OTTER can exploit.

Why not optimize for WAN costs? OTTER does not ex-
plicitly incorporate monetary cost as an optimization crite-
ria. Cloud compute and network costs tend to be uniform
within countries. Most 5G network deployments are at na-
tional scales. Operators and clouds that they depend on use
direct peering. Hence, optimizing for WAN costs is not a
priority for OTTER and we leave that for future work.

Will OTTER negatitvely impact existing WAN TE? OT-
TER works within the confines of TE in both WANs — the
routes available to OTTER are what the underlying TE has
exposed to applications. OTTER then can only influence the
traffic matrix, which TE systems effectively optimize over. If
OTTER-induced demands are sufficiently high, TE systems
can change the routes available to applications, including OT-
TER. OTTER will in turn adapt to these new routes and still
pick the best ones for 5G workloads. While there is a feed-
back loop between OTTER and TE, it is not one that can be
exploited for reducing the efficiency of existing TE. In Ap-
pendix H, we explore the value of using paths that underlying
TE systems create but do not expose to applications.

9 Related Work

Overlay networks. Researchers have proposed overlay
networks to improve underlying network availability, per-
formance, or security [4, 5, 17, 22, 36, 59, 70, 77]. Recently,
Skyplane [40] proposed a cloud overlay for inter-cloud bulk
transfers between object stores, and selects routes that bal-
ance price and throughput. Routes and VMs are chosen
using static throughput and cost measurements and partici-
pate in store-and-forward queuing. Hercules [29] is another
bulk-transfer tool for overlays. CRONets [18] deploys over-
lay nodes on cloud networks and leverages MPTCP through
overlay paths to improve throughput. CloudCast [72] fo-
cuses on latency improvement using cloud overlays.

OTTER also uses an overlay network to interconnect a 5G
operator WAN and a cloud WAN. Unlike prior work, OT-
TER optimizes for various 5G NFs and applications, each of
which can have different performance requirements, not just
bulk data transfer. OTTER optimizes network paths online by
using dynamic measurements for a wide range of metrics, in-
cluding RTT, jitter, and loss. We achieve higher inter-cloud,
per-VM throughput than prior work [40], in part because our
security and privacy oriented topology design does not suffer
from limits that some clouds impose on bandwidth to pub-

lic IPs (Appendix B). OTTER also allocates both the path of
flows as well as the compute destination.

Cloud TE. Existing cloud TE systems (such as Taiji [19],
COPE [87], SWAN [39], B4 [41], BwE [46], OneWAN [45],
Cascara [76], Espresso [94]) maximize network utilization or
bandwidth fairness, or minimize cost for traffic grouped by
coarse-grained priority classes. OTTER is not a replacement
for existing TE, as underlay paths will still be subject exist-
ing TE. OTTER is an enhancement that can optimize at the
granularity required for 5G applications by selecting overlay
paths between multiple destinations across WANs. Addition-
ally, OTTER performs dynamic flow placement and consid-
ers server resource capacities at endpoints, while TE peri-
odically allocates batched traffic predictions and only con-
siders network resource constraints. While some recent TE
work [50] to optimize more fine-graned flows for applica-
tions, this optimization still takes place within a single WAN,
and does not consider the multi-WAN setting of OTTER.

Multi-WAN collaboration. Unlike TE systems, OTTER op-
timizes traffic that spans two WANs. Prior work (Nexit [48],
Wiser [47], P4P [90], Flow Director [68]) attempt to facil-
itate coordination between two independent entities by al-
lowing them to exchange information while preserving pri-
vacy. Nexit and Wiser allow two ISPs to route traffic effi-
ciently, despite competing interests. Nexit uses a negotiation-
based approach, while downstream ISPs using Wiser tag
routing advertisements with costs used by upstream ISPs.
P4P improves peer-to-peer application performance by al-
lowing ISPs to share performance and topology information
with applications. Flow Director uses ALTO [2] to share in-
formation between ISPs and CDNs to optimize content place-
ment. However, these works require negotiation to ensure
mutually beneficial routing. OTTER makes use of the fact
that, for 5G networks, these incentives are already aligned –
operators pay to deploy resources on cloud networks to facil-
itate better QoS for 5G flows. OTTER does not require any
buy-in from cloud platforms, so routing and resource place-
ment can be done without coordination.

Better routing. Attempts to improve interdomain rout-
ing include multipath extensions to BGP [38, 92] and inter-
domain bandwidth reservation such as N-Tube [88]. New
routing protocols that allow nodes to select paths that opti-
mize multiple metrics include Routing on Multiple Optimal-
ity Criteria [78]. Such approaches may improve path diver-
sity or even path selection. However, they must still optimize
routing based on static metrics such as BGP AS path length
or width, and cannot adjust based on dynamic metrics such
as loss or latency. Deploying any of these technologies re-
quires changes to BGP, which has proven to be a major prac-
tical impediment. SCION [95] is a novel Internet routing
architecture that seeks to provide high security and availabil-
ity. However, it requires ISP buy-in to deploy border routers
to participate. RouteScout [7], PAINTER [43] and SCULP-
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TOR [6] reroute traffic based on traffic performance degrada-
tion. However, such optimizations are performed locally or
per prefix. In contrast, OTTER optimizes the entire overlay
according to the performance demands of all flows, allocates
per flow, and does not require deploying new devices.

Better path selection at the edge. In Tango [16], edge net-
works coordinate to expose more paths, enable better mea-
surements, and route traffic efficiently. Rather than coordi-
nate paths between edge networks, OTTER directly sets up
overlay paths between the cloud provider and 5G operators
by orchestrating resources on the cloud network. OTTER
also routes traffic according to application-specific service
demands and relies only on existing cloud network technolo-
gies. Other work [42] selects paths between a private WAN
and the public Internet for video conferencing applications
(e.g., Teams) based on extensive measurement data. Like
OTTER, this work jointly optimizes the path and destination
DC selection. However, unlike OTTER, it neither considers
the general setting of 5G applications nor the coordination of
paths among multiple ASNs. Any of these mechanisms that
expose multiple paths to an endpoint could be utilized at the
transport layer by multipath TCP.

Virtual Network Function (VNF) placement. Systems
for VNF placement [62, 63, 82] optimize for metrics such as
cost and CPU utilization of NFs. However, unlike OTTER,
they do not consider the QoS needs of individual flows, and
are evaluated on simulated setups. VNF placement systems
periodically optimize for coarse-grained objectives, accord-
ing to predicted future load, but OTTER dynamically places
flows and resources, on-demand, according to customizable
fine-grained service objectives.

10 Conclusions

The next generation of 5G networks includes new frequency
bands and radio technology, equipping users with access
links so fast that their E2E performance will become bot-
tlenecked by inter-domain paths [91] rather than last mile
access links. Moreover, next generation 5G networks will
rely on hyperscalers to deploy software-based 5G NFs [61]
and interactive applications. Thus, we need to improve the
performance of paths across operator and cloud WANs.

We demonstrate the value of constructing such paths over
two commercial WANs. OTTER achieves 13% higher av-
erage throughput or 6-10 Gbps in the maximum, RTT re-
duction as much as 42 ms within the US, jitter reduction
by 45% on average, and 0.06% lower packet loss. We de-
signed and implemented a scalable algorithm to jointly op-
timize the placement of workloads on available paths and
compute resources. It allocates 26%–45% more bytes on the
network than good baselines while also satisfying the service
demands of more flows. While we focus on the urgency of
5G, our research contributions may be relevant in other up-

coming access technologies such as 6G.
OTTER unlocks avenues of future work. Underlay paths

that are private to one WAN can provide even more diversity
in end-to-end path performance than we have shown – how
can they be leveraged? How will OTTER work in topologies
where a 5G operator relies on two or more hyperscalers?
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A Multi-WAN US Topology

Figure 19 shows all the Azure and GCP cloud components
(VMs, VPN gateways, etc.) and the connections between
them on the continental US-wide topology we have deployed
for evaluating OTTER. It is generated from the output of our
Terraform deployment, using a Terraform visualizer called
Rover. While difficult to read, the figure indicates the com-
plexity and scale of our evaluation topology across 8 Azure
and 8 GCP regions, as it contains many cloud components
and connections between them.

Table 6 shows the 8 sets of VPN connections that we use
in our evaluation topology. For example, the first row shows
that GCP us-central1 is peered with Azure centralus. Each
peering consists of 4 VPN connections, each with 2 tunnels,
for improved throughput and resilience. This number can be
increased or decreased as needed, or further augmented [30],
but we have found that 8 tunnels gives us a good tradeoff
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GCP Region name GCP Region location Azure Region name Azure Region location

us-central1 Iowa ⇐⇒ centralus Iowa
us-east1 South Carolina ⇐⇒ eastus Virginia
us-east4 Virginia ⇐⇒ eastus2 Virginia
us-east5 Ohio ⇐⇒ northcentralus Illinois
us-south1 Texas ⇐⇒ southcentralus Texas
us-west3 Utah ⇐⇒ westcentralus Wyoming
us-west2 California ⇐⇒ westus California
us-west4 Nevada ⇐⇒ westus3 Arizona

Table 6: VPN connections between Azure and GCP regions.
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Figure 12: Network performance of paths available by differ-
ent mechanisms. The jitter vertical axis is chopped at 1200
µs for clarity, and the loss vertical axis is chopped at 0.5%.

between cost and throughput. In picking which Azure region
peers with which GCP region, our goal was to mimic how a
5G operator would peer with a cloud provider. Such peerings
occur at carrier hotels or "meet-me" points, where two or
more ASes may co-locate their routing equipment. Hence we
strove to pick pairs of regions that were physically close to
each other. Note that when we evaluated OTTER, there was
one additional US region offered by both clouds, however we
were unable to acquire sufficient compute capacity in those
regions.

B Additional Analysis of OTTER Orchestra-
tor Performance

Figure 12 summarizes the characteristics of the paths avail-
able by different mechanisms. The “default” box plots
show the performance spread between all Src-Dst pairs in

our topology (§7.1) across the 24 hour measurement period,
when not controlling the path and allowing the two WANs to
pick the path [32]. The “public” box plots show the perfor-
mance spread without any of our security and privacy infras-
tructure (i.e., no private VNets, no VPN gateways, no VNet
peering), where the source and destination use public IP ad-
dresses and nothing specified by us in between. The OTTER
box plots show the best performing OTTER Orchestrator path
for each Src-Dst pair for the relevant network performance
metric.

We make several observations. Our secure, private, and
scalable deployment topology offers far higher throughput
than when using public routing. The {min, average, max}
throughput for public is {3.0 Gbps, 6.5 Gbps, 7.1 Gbps},
while for default it is {6.3 Gbps, 14.0 Gbps, 16.8 Gbps}.
As prior work [40] noted, some clouds such as GCP limit
outbound transfers to 7 Gbps, but those limits do not ap-
ply to our use of private VNets and VPN connections. OT-
TER is able to further improve these numbers to {13.3 Gbps,
15.8 Gbps, 20.8 Gbps}. The median, 25th, and 75th per-
centile RTTs are slightly higher for default compared to pub-
lic, but with far less spread above the 75th percentile. OTTER
offers the lowest RTT at the 25th and higher percentiles. OT-
TER also offers the tightest jitter and lowest loss.

Figure 13 shows the performance improvement when com-
paring different mechanisms. “O-D” shows for every Src-
Dst pair, for every round of measurements, the additional per-
formance that the OTTER Orchestrator achieves compared to
the default path on our topology. “O-P” provides OTTER’s
improvement over the public path when using public IP ad-
dresses and no private networking functions. “P-D” shows
the improvement of the public path over the default private
path. Figure 14 shows the same data, but as a percentage
improvement. When considering the “O-D” boxes, all the
values are 0% or higher, because the OTTER Orchestrator
will never pick a path that has worse performance for the
desired metric. The “O-P” and “P-D” boxes show that for
RTT, jitter, and loss, the use of private networking functions
introduces occasional performance regressions. We believe
these functions are run by cloud providers in VMs, and that
introduces small amounts of occasional jitter and packet loss
as traffic goes up and down the software stack. Nonetheless,
OTTER improves on this, by, for example, picking paths that
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Figure 13: Improvement in network performance. On the
horizontal axis, “O-D” shows the performance improvement
of OTTER over default, “O-P” is OTTER over public, and
“P-D” is public over default.

go through other instances of VPN gateways that are not suf-
fering from noise at the moment. This is seen in Figure 12,
where on each metric of throughput, RTT, jitter, and loss,
OTTER offers the best path.

C Evaluation of OTTER Optimizer on Differ-
ent Mean Flow Durations

Table 7 summarizes the results of how well OTTER allo-
cates flows of varying durations using the heuristics de-
scribed in §7.2: GREEDY, PER+PATHPIN, PER+DSTPIN,
PER, OPT+PATHPIN, OPT+DSTPIN, and OPT. These re-
sults, like results in §7.2, show that heuristics relying on a
greedy allocation (GREEDY, PER+PATHPIN, PER+DSTPIN,
PER) typically allocate less traffic, but are more practical for
real-time decisions. We also see that with longer flow dura-
tions, the amount of bytes allocated per flow decreases for
each algorithm. This is because, with longer flows, there are
less resources available for later flows, because earlier flows
are still active.

D Service Demand Generation

The traffic composition on 5G networks is dynamic and can
evolve over time, making it difficult to predict what kinds of
demands will be present. Applications will also have diverse
service requirements across various performance metrics. To
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Figure 14: Percentage improvement in network performance.
On the horizontal axis, “O-D” shows the performance im-
provement of OTTER over default, “O-P” is OTTER over pub-
lic, and “P-D” is public over default. Loss is not presented
because the large spread of outliers on small values makes
the graph difficult to read.

mimic 5G traffic in our evaluations, we generate flows by as-
signing them an “application profile” based on service guide-
lines from the 3GPP and other sources.

We selected a set of example applications outlined by the
3GPP standard [79] that represent a diverse range of perfor-
mance demands that 5G networks are expected to support.
These applications are listed in the first column of Table 5.
In § 5.7.4 of the relevant 3GPP standard [79] are guidelines
for the packet delay budget and packet error rate for each ap-
plication, which we use to determine RTT and packet loss
demands. These are shown in the latency and loss columns
in Table 5. To obtain RTT demands, we double the one-way
latency guidelines listed in that 3GPP standard. However,
it does not provide information on throughput and jitter, so
we infer them from other sources [1, 58, 66, 71, 83, 85]. In
cases where the throughput demands are unclear or conflict-
ing, we set a default of 1 Mbps for a single 4-tuple flow. We
chose real-time gaming as one application with explicit jit-
ter demands, doubling the 10 ms one-way jitter guideline
from [71] to match the round-trip path attributes measured
on our topology.

As mentioned in §4, OTTER models service demands as
a vector of demand functions which map path performance
characteristics to a tolerance coefficient in the range (0,1],
where 1 is best. A demand function is able to capture com-
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mean flow
duration(s)

mean flow arrival
rate (flows/s) GREEDY PER+PATHPIN PER+DSTPIN PER OPT+PATHPIN OPT+DSTPIN OPT

5 20K 0.95 0.99 0.99 0.99 0.99 1.0 1.0
5 30K 0.61 0.84 0.84 0.93 0.92 0.95 0.98
5 40K 0.60 0.78 0.82 0.85 0.85 0.87 0.91
10 20K 0.64 0.80 0.82 0.91 0.87 0.90 0.96
10 30K 0.55 0.74 0.76 0.83 0.81 0.83 0.87
10 40K 0.44 0.64 0.64 0.66 0.68 0.69 0.70
20 20K 0.50 0.71 0.71 0.79 0.79 0.79 0.84
20 30K 0.30 0.47 0.47 0.54 0.54 0.54 0.58
20 40K 0.17 0.34 0.34 0.41 0.40 0.41 0.45
30 20K 0.36 0.54 0.55 0.68 0.66 0.66 0.72
30 30K 0.21 0.38 0.38 0.47 0.43 0.44 0.50
30 40K 0.23 0.35 0.35 0.37 0.37 0.38 0.39
60 20K 0.45 0.64 0.63 0.67 0.67 0.68 0.69
60 30K 0.32 0.45 0.46 0.49 0.47 0.49 0.50
60 40K 0.21 0.32 0.33 0.35 0.34 0.35 0.36

Table 7: Fraction of allocated bytes across flows for varying mean flow durations.

plex service demands, which we believe will be necessary to
capture the QoS characteristics expected by 5G applications.
In our implementation, a demand function can be either a
step, linear, or rational function, with inflection points ran-
domly selected from within ±25% of the service guidelines
mentioned above. For flows that are indifferent to the metric
(e.g., jitter), the demand function is constant at 1.

The service demand generation process is as follows: each
flow is first randomly assigned an application profile. For
each performance metric, we randomly assign a function
type, then generate inflection points. For example, an aug-
mented reality flow may have a step-type demand function
for RTT that looks like the following:

Drtt
f (σrtt

p ) =

{
1, if σrtt

p ≤ 21.2 ms
ε, if σrtt

p > 21.2 ms

}
We then randomly select a value within ±25% of the appli-
cation’s guideline throughput demand.

E Evaluation of OTTER Optimizer on Differ-
ent Flow Distributions

Table 8 summarizes the results of how well OTTER satisfies
flow RTT requirements for varying distributions of flows, us-
ing the heuristics described in §7.2. We vary the proportion
of flows with strict RTT requirements (RTT ≤ 60ms) and
report the average RTT satisfaction for those RTT-sensitive
flows. We find that for lower arrival rates, the proportion
of RTT-sensitive flows does not affect their satisfaction, as
there is less contention for resources. Like the results in §7.2,
the GREEDY heuristic provides the lowest satisfaction. The
heuristics that pin flows to either paths or destinations also
provide less satisfaction than PER and OPT, as RTT-sensitive
flows may get pinned to a high-RTT path, even as capacity
on lower-RTT paths becomes available.

F Evaluation of OTTER Optimizer on Differ-
ent Network Sizes

Table 9 summarizes the results of how well OTTER al-
locates flows on networks of various sizes using the
same mean flow arrival rates and the heuristics described
in §7.2: GREEDY, PER+PATHPIN, PER+DSTPIN, PER,
OPT+PATHPIN, OPT+DSTPIN, and OPT. These results are
qualitatively similar to those described in §7.2, with OPT be-
ing able to allocate more traffic compared to the other algo-
rithms, but the PER heuristics scaling better with higher traf-
fic load on the same network topology. We can additionally
see that as we increase the number of paths between each
Src-Dst pair, all algorithms are able to improve the amount
of bytes allocated per flow. This is explained by the increase
in path diversity, which gives more options for flows to be
mapped to paths that better suit their service demands. The
same effect can be seen as the number of sources and destina-
tions increases. This increases the overall resource capacity
of the network, since there are more links and compute re-
sources for the same traffic load.

We also evaluate OTTER on larger topologies with larger
flow arrival rates. We choose topology sizes to match the
scale of contemporary TE systems, B4 [41] (approximately
30 DC sites globally) and SWAN [39] (evaluated with up to
40 DC nodes). In each topology, we set 75% of the destina-
tions to be edge nodes, and set the rest to be DC nodes. We
generate path, destination, and flow attributes (except flow ar-
rival rates) using the values in Table 4. We scale up the flow
arrival rates because as the topology grows, smaller arrival
rates do not produce enough traffic to cause resource con-
tention, and OTTER is able to achieve 100% allocation. We
set the mean flow arrival rate to the number of source nodes
times the number of destination nodes. The results are sum-
marized in Table 10. The allocation from the OPT+PATHPIN,
OPT+DSTPIN, and OPT heuristics are qualitatively similar to
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% flows with
RTT ≤ 60ms

mean flow arrival
rate (flows/s) GREEDY PER+PATHPIN PER+DSTPIN PER OPT+PATHPIN OPT+DSTPIN OPT

30 20K 0.34 0.38 0.48 0.77 0.50 0.57 0.85
30 30K 0.33 0.36 0.43 0.65 0.43 0.52 0.71
30 40K 0.22 0.17 0.22 0.39 0.23 0.31 0.43
50 20K 0.48 0.52 0.56 0.81 0.57 0.65 0.87
50 30K 0.31 0.33 0.37 0.58 0.38 0.46 0.64
50 40K 0.20 0.21 0.27 0.46 0.27 0.34 0.53
70 20K 0.48 0.52 0.58 0.79 0.55 0.66 0.85
70 30K 0.22 0.27 0.29 0.53 0.34 0.44 0.59
70 40K 0.21 0.24 0.26 0.46 0.29 0.38 0.53

Table 8: Average RTT satisfaction for flows with varying application distributions.

Small (4 srcs, 4 dsts)

paths per
src/dst pair

mean flow arrival
rate (flows/s) GREEDY PER+PATHPIN PER+DSTPIN PER OPT+PATHPIN OPT+DSTPIN OPT

5 20K 0.18 0.36 0.36 0.38 0.36 0.37 0.40
5 30K 0.16 0.27 0.27 0.28 0.28 0.27 0.29
5 40K 0.15 0.20 0.20 0.20 0.20 0.21 0.21
10 20K 0.31 0.56 0.57 0.62 0.59 0.60 0.64
10 30K 0.27 0.43 0.43 0.45 0.45 0.45 0.47
10 40K 0.23 0.31 0.31 0.31 0.32 0.32 0.32
20 20K 0.41 0.65 0.63 0.83 0.74 0.72 0.88
20 30K 0.34 0.54 0.56 0.63 0.61 0.62 0.68
20 40K 0.20 0.36 0.36 0.46 0.45 0.45 0.53

Medium (8 srcs, 8 dsts)

paths per
src/dst pair

mean flow arrival
rate (flows/s) GREEDY PER+PATHPIN PER+DSTPIN PER OPT+PATHPIN OPT+DSTPIN OPT

5 20K 0.78 0.87 0.89 0.93 0.91 0.92 0.95
5 30K 0.34 0.56 0.57 0.67 0.63 0.64 0.72
5 40K 0.40 0.55 0.56 0.56 0.58 0.58 0.60
10 20K 0.74 0.86 0.90 0.95 0.93 0.93 0.99
10 30K 0.48 0.69 0.71 0.75 0.76 0.77 0.82
10 40K 0.52 0.68 0.69 0.73 0.76 0.78 0.79
20 20K 0.92 0.99 0.99 0.99 0.99 0.99 1.0
20 30K 0.59 0.79 0.81 0.88 0.91 0.92 1.0
20 40K 0.52 0.68 0.70 0.79 0.83 0.84 0.94

Large (12 srcs, 12 dsts)

paths per
src/dst pair

mean flow arrival
rate (flows/s) GREEDY PER+PATHPIN PER+DSTPIN PER OPT+PATHPIN OPT+DSTPIN OPT

5 20K 0.95 0.98 0.99 0.99 0.99 0.99 1.0
5 30K 0.71 0.88 0.89 0.93 0.95 0.96 0.99
5 40K 0.61 0.77 0.80 0.87 0.87 0.91 0.97
10 20K 1.0 0.99 1.0 1.0 0.99 1.0 1.0
10 30K 0.93 0.99 0.99 0.99 0.99 0.99 1.0
10 40K 0.65 0.82 0.85 0.88 0.96 0.96 0.99
20 20K 1.0 0.99 1.0 1.0 0.99 1.0 1.0
20 30K 0.95 0.99 0.99 1.0 0.99 0.99 0.99
20 40K 0.79 0.93 0.93 0.94 0.99 0.99 1.0

Table 9: Fraction of allocated bytes across flows for varying network sizes.
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(12 srcs, 12 dsts)

paths per
src/dst pair

mean flow arrival
rate (flows/s) GREEDY PER+PATHPIN PER+DSTPIN PER OPT+PATHPIN OPT+DSTPIN OPT

5 72K 0.34 0.49 0.49 0.53 0.59 0.60 0.64
8 72K 0.38 0.54 0.55 0.59 0.66 0.67 0.72
10 72K 0.45 0.61 0.63 0.62 0.74 0.77 0.81
20 72K 0.49 0.64 0.66 0.62 0.84 0.84 0.95

(16 srcs, 16 dsts)

paths per
src/dst pair

mean flow arrival
rate (flows/s) GREEDY PER+PATHPIN PER+DSTPIN PER OPT+PATHPIN OPT+DSTPIN OPT

5 128K 0.30 0.48 0.47 0.51 0.55 0.56 0.59
8 128K 0.29 0.45 0.45 0.50 0.55 0.57 0.64
10 128K 0.30 0.46 0.47 0.53 0.60 0.62 0.69
20 128K 0.42 0.57 0.59 0.57 0.79 0.82 0.90

(20 srcs, 20 dsts)

paths per
src/dst pair

mean flow arrival
rate (flows/s) GREEDY PER+PATHPIN PER+DSTPIN PER OPT+PATHPIN OPT+DSTPIN OPT

5 200K 0.27 0.45 0.45 0.51 0.54 0.55 0.59
8 200K 0.30 0.48 0.48 0.54 0.58 0.60 0.67
10 200K 0.31 0.49 0.49 0.54 0.62 0.62 0.70
20 200K 0.34 0.50 0.52 0.55 0.67 0.69 0.77

(32 srcs, 32 dsts)

paths per
src/dst pair

mean flow arrival
rate (flows/s) GREEDY PER+PATHPIN PER+DSTPIN PER OPT+PATHPIN OPT+DSTPIN OPT

5 512K 0.20 0.36 0.37 0.43 0.42 0.42
8 512K 0.23 0.39 0.39 0.45 0.47 0.46
10 512K 0.25 0.41 0.42 0.47 0.49
20 512K 0.27 0.42 0.43 0.42

(64 srcs, 64 dsts)

paths per
src/dst pair

mean flow arrival
rate (flows/s) GREEDY PER+PATHPIN PER+DSTPIN PER OPT+PATHPIN OPT+DSTPIN OPT

5 2M 0.17 0.25 0.26 0.24
8 2M 0.18 0.25 0.25 0.26
10 2M 0.19 0.22 0.23 0.20
20 2M 0.18 0.21 0.23 0.19

Table 10: Fraction of allocated bytes across flows for varying network sizes, with mean flow arrival rates scaled according
to network size. Some values for OPT heuristics are missing because of the excessive and unrealistic compute times these
heuristics need.
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Figure 15: Number of paths between each Src-Dst pair that
carries at least one flow.

results in §7.2. As the flow arrival rate grows, there is a more
significant gap between the PER+PATHPIN, PER+DSTPIN,
and PER and the OPT heuristics. This is because the OT-
TER Optimizer has a longer runtime, which means the PER
heuristics rely more on greedily allocating flows.

G OTTER’s Path Usage

We present additional analysis results on the path usage of
OTTER’s allocation methods. This is in contrast to the ser-
vice demand satisfaction and byte allocation metrics pre-
sented in the main body of the paper. We use this to demon-
strate that the evaluated topologies have realistic capacity
constraints and path metrics, and that the OTTER Optimizer
does not simply assign the majority of flows to a single, par-
ticularly attractive, hypothetical path (e.g., one that happens
to have extremely low RTT, high throughput, and low loss).

Figure 15 shows the number of paths between each
Src-Dst pair that is assigned at least one flow under the
PER+PATHPIN allocation method. We use the default topol-
ogy described in § 7.2, with eight sources, eight destinations,
and eight paths between each Src-Dst pair. We can see that
for more than half of all Src-Dst pairs, all eight paths are
employed. In 75% of cases, at least seven paths are used.
This demonstrates that OTTER does not simply favor a small
number of well-provisioned paths, but that it balances traffic
across those that are available to maximize satisfaction.

We further show in Figure 16 the distribution of the num-
ber of unique flows that are assigned to each path. We use a
mean flow arrival rate of 40K flows per second for a period
of 30 seconds from the time of the first flow. While there is
a long tail in terms of number of flows assigned to each path,
almost 90% of all paths in the network are allocated at least
one flow within first 30 seconds.

H WAN Underlay Opportunity

The focus of OTTER is as an overlay, in setups which can be
constructed by customers of public clouds without any spe-
cial privileges. WANs, whether they be cloud WANs or 5G
operator WANs, have a dedicated underlay network. This
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Figure 16: CDF of the number of unique flow aggregates
assigned to each path in the network.
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Figure 17: Relative network performance between two VMs
across the US, with each box representing a different class
of service. Jitter graph is chopped on vertical axis for clarity
– outliers go up to 2X, 3X, 3X higher for each class from
left to right.

underlay is typically comprised of layer 2 (such as MPLS
or SONET) segments which are stitched together to form
layer 3 links that interconnect various locations (DCs and/or
PoPs). Some WANs maintain multiple paths in the underlay
between any two locations [45], as well as different queues
at the routers in the WAN. The combination of the two can
be used to create different classes of service, with different
properties (such as bandwidth, RTT, jitter, loss, reliability,
cost). While typically not exposed to customers, we wonder
if these underlay network capabilities could even further en-
hance the value of OTTER as part of a native offering by a
WAN.

To briefly demonstrate the value of using these underlay
capabilities, we show the relative network performance be-
tween two VMs, one in the US West coast and one in the US
East coast, on a cloud WAN, over three different classes of
service, on a two hour window in the middle of a US week
day. We run approximately 100 iPerf3 measurements lasting
10 s each for each of UDP and TCP on each class of service.

Figure 17 shows that each class offers a different trade-
off. The class in the middle tends to offer more throughput
but also slightly more jitter than the other two. The class on
the right offers more throughput and less loss than the left,
but more uncertainty in the throughput. As shown in Fig-
ure 18, these tradeoffs are not static, necessitating a dynamic
approach to allocating traffic to underlay offerings. RTT is
also different and time-varying between these classes – the
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Figure 18: Relative throughput between two VMs in the US.
Each line represents a different class of service.

minimum RTT is the same for all three, but the maximum is
1.7× higher for the middle class.

We have removed the units on the vertical axes on the
graphs as these results are obtained from proprietary access
to underlay paths that are not available to the public. How-
ever, the key takeaway is visible, that there are different un-
derlay paths offering different tradeoffs in network perfor-
mance. As future work, we are considering how to construct
hybrid paths across one WAN with only overlay paths and
another WAN with access to underlay paths.

1266    22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Figure 19: OTTER multi-WAN topology deployed on continental US scale across Azure and GCP.
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